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Abstract. The method of using the dimension of space-time as a complex parameter
introduced recently to regularize Feynman amplitudes is extended to an arbitrary Feynman
graph. The method has promise of being particularly well-suited to gauge theories. It is
shown how the renormalized amplitude, together with the Lagrangian counter-terms, may
be extracted directly, following the method of analytic renormalization.

I. Introduction

Of late, a number of authors suggested, independently, an approach
to the renormalization of the perturbation expansion in Lagrangian
quantum field theory which uses the dimension of space-time as a
complex parameter [1-3]. The most important feature of the method
is that the regularization procedure in general preserves the formal
structure necessary for the theory to satisfy Ward-Takahashi identities
appropriate to the gauge symmetries present. With exceptions, the
argument relies on the observation that the Ward-Takahashi identities
are formally independent of the space-time dimension!. The method
of extracting renormalized results is very close in spirit to the method
of analytic renormalization of Speer [4,5], which, per se, does not
preserve gauge symmetries [6].

Now the attractive feature of analytic renormalization is that the
renormalized amplitude is defined non-recursively, but it is equivalent
to the additive, recursive definition of Bogolubov, Parasiuk, and Hepp
[7] (which is the most general treatment in Lagrangian quantum field
theory). Both approaches have been shown to yield the Lagrangian
counter-terms directly.

In Refs. [1-3], the method of regularization was only demonstrated
by example in lowest orders. It is our purpose here to give a general

1 The exceptions are, for example, when the theory contains an axial coupling; it is
then implicitly necessary that there be an odd number of space dimensions.
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