Commun. math. Phys. 27, 235-239 (1972) © by Springer-Verlag 1972

On the Asymptotic Behavior of Wightman Functions in Space-Like Directions* **

IRA HERBST

The University of Michigan, Ann Arbor, Michigan, USA

Received January 3, in revised form May 9, 1972

Abstract. The asymptotic behavior of the truncated vacuum expectation value of a product of N (unbounded) quasilocal operators, $F(x) = \langle Q_1(x_1) \dots Q_N(x_N) \rangle_T$, is investigated for some of the separations space-like. It is shown that unless all clusters $\{x_{i_1}, \dots, x_{i_N}\}$ are partially time-like (or light-like) separated from their complements $\{x_{i_1}, \dots, x_{i_N}\}$, F(x) decreases faster than any inverse power of the diameter of the set $\{x_1, \dots, x_N\}$.

I. Introduction

The asymptotic behavior of the vacuum expectation value (VEV) of a product of field operators, $\langle 0 | \varphi(x_1) \dots \varphi(x_N) | 0 \rangle$, has been studied by many authors [1–5] for some of the separations, $x_i - x_j$, space-like. Although rapid decrease of the truncated VEV (after smearing with rapidly decreasing test functions) has been proved for $x = (x_1, \dots, x_N)$ in some regions of \mathbb{R}^{4N} , there does not seem to be any general statement of the space-like asymptotic behavior of this function available in the literature¹. In this note we extend the method of Ruelle [3] to show fast decrease in a much larger region of \mathbb{R}^{4N} .

II. Definitions and Results

We consider a scalar Wightman field [7], $\varphi(x)$, and define the "quasilocal" operators

$$Q_i(0) = \int \left(\prod_{j=1}^{M_i} d^4 y_j\right) f_i(y_1, \dots, y_{M_i}) \, \varphi(y_1) \dots \varphi(y_{M_i}) \,, \tag{1}$$

for i = 1, ..., N. Here $f_i \in \mathcal{S}$, the Schwartz space of infinitely differentiable functions which decrease (along with all derivatives) faster than any

^{*} This work was supported in part by the U.S. Atomic Energy Commission.

^{}** Research supported in part by the National Science Foundation.

¹ We thank R. Haag for pointing out the work of H. Araki [6] whose results for the truncated VEV of *bounded* operators are essentially equivalent to our Theorem 1. We remark that Araki's proof does not generalize to unbounded operators.