Commun. math. Phys. 21, 211–218(1971) © by Springer-Verlag 1971

New Elliptic System and Global Solutions for the Constraints Equations in General Relativity

YVONNE CHOQUET-BRUHAT

Département de Mécanique, Université de Paris, Paris, France

Received November 1, 1970

Abstract. By a new choice of the arbitrarily given quantities on an initial 3-manifold we reduce the system of constraints, in General Relativity, to an elliptic system of four equations, the coefficients of which have a simple geometric interpretation on the 3-manifold. The system seems well suited for a global study and some results are given in this direction.

Introduction

An initial data set \mathscr{I} , in General Relativity¹, is a 3 dimensional differentiable manifold V_3 , a negative definite riemannian metric on V_3, \overline{g} , and a second rank, symmetric, tensor P, satisfying the constraint equations:

$$\begin{split} \overline{V}_j(P_i^j - \delta_i^j P) &= 0, \qquad P = P_i^i, \\ \overline{R} + H^2 - P^2 &= 0, \qquad H^2 = P_{ij}P^{ij}. \end{split}$$

Where \overline{R} is the riemannian scalar curvature, and \overline{V} the covariant derivative of \overline{g} .

An einsteinian space time is a 4-dimensional differentiable manifold V_4 , endowed with a hyperbolic metric g, with vanishing Ricci tensor. It is said that (V_4, g) is a solution of the Cauchy problem, associated with the initial data \mathscr{I} , if there is a diffeomorphism Λ of V_3 with a submanifold Σ of V_4 such that the image by Λ of \overline{g} and P coïncide respectively with the metric induced on Σ by Λ and the second fundamental form of Σ as submanifold of (V_4, g) .

It is known that to each initial data set corresponds an einsteinian space time, and only one in the class of maximal, globally hyperbolic space times [4].

The system of constraint equations (1), (2) has been already extensively studied², but rather few global (i.e. interesting) solutions are

¹ We speak, for simplicity, of empty-space equations. We will, in an appendix, show how the interior case can be treated along the same lines.

² For a bibliography up to 1962 see Bruhat (1962).