On Representations of the Canonical Commutation Relations*

Huzihiro Araki**

Queen's University, Kingston, Ontario, Canada

Received August 25, 1970

Abstract. In the measure space construction of a representation of the canonical commutation relations, the strong continuity of any one parameter subgroup is proved.

All multipliers for the separable case are expressed in a constructive manner and an irreducibility criterion for a subset of multipliers is obtained.

§ 1. Introduction

For a pair of a linear space V_{ϕ} and a subspace V_{π} of its algebraic dual V_{ϕ}^* , a representation of CCR (canonical commutation relations) is unitary operators U(f) and V(g) for each $f \in V_{\phi}$ and $g \in V_{\pi}$ satisfying

$$U(f_1) U(f_2) = U(f_1 + f_2),$$
 (1.1)

$$V(g_1) V(g_2) = V(g_1 + g_2),$$
 (1.2)

$$U(f) V(g) = V(g) U(f) e^{-ig(f)}$$
. (1.3)

It is usually required that $U(\lambda f)$ and $V(\lambda g)$ are strongly continuous in the real parameter λ for each fixed $f \in V_{\phi}$ and $g \in V_{\pi}$.

Let μ be a V_{π} -quasi-invariant probability measure on (V_{ϕ}^*, B_{ϕ}) , where B_{ϕ} is the σ -algebra generated by cylinder sets. The standard representation of CCR on $H_{\mu} = L_2(V_{\phi}^*, B_{\phi}, \mu)$ is given by $U_{\mu}(f)$ and $V_{\mu}(g)$ defined as follows:

$$[U_{\mu}(f)\Psi](\xi) = e^{i\xi(f)}\Psi(\xi), \qquad (1.4)$$

$$[V_{\mu}(g)\Psi](\xi) = [d\mu(\xi+g)/d\mu(\xi)]^{1/2}\Psi(\xi+g). \tag{1.5}$$

Here $\Psi \in H_{\mu}$ and $\xi \in V_{\phi}^*$ [1, 7].

The continuity of $U_{\mu}(\lambda f)$ in λ is easily proved but the continuity of $V_{\mu}(\lambda g)$ in λ is not known in the literature for non-separable space (cf. [9, 10]). We shall prove continuity of $V_{\mu}(\lambda g)$ in λ in Section 2.

^{*} Preprint No. 1970-27.

^{**} On leave from Research Institute for Mathematical Sciences Kyoto University, Kyoto, Japan.