Commun. math. Phys. 15, 201-207 (1969)

Stable Potentials I

A.LENARD and S. SHERMAN*

Department of Mathematics, Indiana University Bloomington

Received August 6, 1969

Abstract. We discuss a conjecture of Ruelle concerning *stable* potentials on a group. For the groups Z_2 , Z_3 , Z_4 , and Z_6 any stable potential can be written as the sum of a non-negative function and a function of non-negative type. This is not true for the groups Z_k (k odd, ≥ 5). For the Euclidean group R^v the question is open.

§ 1

The following theorem is due to David Ruelle [1]. Let φ be a real valued, even, upper semicontinuous function on a Euclidean space E. Let

$$\begin{cases} U_1 = 0 \\ U_n = \sum_{1 \le i < j \le n} \varphi(x_i - x_j) \end{cases} (n = 2, 3, ...)$$
(1)

The following conditions are equivalent:

(a)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \varphi(x_i - x_j) \ge 0$$
 (2)

for all $n \ge 1$ and all (x_1, \ldots, x_n) in E^n .

(b) There is a constant B such that

$$U_n(x_1, \dots, x_n) \ge -nB \tag{3}$$

for all $n \ge 1$ and all (x_1, \ldots, x_n) in E^n .

(c) For all bounded Lebesgue measurable sets $A \in E$ and all positive numbers z and β the series

$$\Xi = 1 + \sum_{n=1}^{\infty} \frac{z^n}{n!} \int_A dx_1 \dots \int_A dx_n e^{-\beta U_n}$$
(4)

converges.

The importance of this theorem is that the quantity Ξ has a fundamental significance in the statistical mechanics of classical systems in thermal equilibrium (it is the Grand Partition Function of Gibbs). φ is called the two-particle potential function, or simply the potential,

^{*} Supported by NSF GP 7946.