Sur la construction asymptotique et l'interprétation physique d'une théorie avec dégénérescence du vide

A. N. VASSILEV l'Université de Leningrade, USSR

Reçu le 6 Fevrier 1969

Abstract. The study of the set Q of Wightman's functionals begun in ref. [5] is continued in this paper. Haag-Ruelle asymptotic construction [1, 2] is formulated for the case when all the pure Wightman's functionals contained in the decomposition of the given functional $\overline{w} \in Q$ generate the same set of asymptotic states. As an example we consider a theory with the degenerate vacuum and prove that it is physically equivalent to a theory with the single vacuum. For this case we show that the transition to the theory with the degenerate vacuum is equivalent to introducing of a charged spurion in the theory with the single vacuum. The mathematically correct creation and destruction operators for this spurion are given.

1. Introduction

Ce travail est le prolongement direct de l'article [5] dont les résultats et les notations seront utilisés sans explication supplémentaire.

Nous étudierons la construction asymptotique de Haag-Ruelle [1,2] pour les fonctionelles de la classe Q [5], autrement dit, pour des fonctionelles de la forme:

$$\overline{w} = \int\limits_{s} w \, d\, \mu(w)$$

où s est un ensemble faiblement compact des fonctionelles de la classe Q_0 et μ une mesure sur s normée à l'unité. Par définition la classe Q_0 est constituée par toutes les fonctionelles de Wightman satisfaisant à la condition spectrale forte et à celle d'unicité du vide [5]. Les fonctionelles de la classe Q engendrent les théories avec dégénérescence du vide.

D'habitude en formulant les axiomes de la théorie quantique des champs on y ajoute la condition d'unicité du vide en supposant sans l'avoir dit explicitement que la théorie avec dégénérescence du vide ne peut pas correspondre à la réalité.

Pour se faire une idée sur ce sujet considérons le cas le plus simple de la dégénérescence du vide — la théorie engendrée par la fonctionelle \overline{w} :

$$\overline{w} = \varrho_1 w_1 + \varrho_2 w_2 \ \varrho_{1,2} > 0 \ \varrho_1 + \varrho_2 = 1 \ w_1 \neq w_2 \ w_{1,2} \in Q_0.$$

L'espace hilbertien de cette théorie est la somme directe des sous-espaces H_{w_1} et H_{w_2} engendrés par w_1 , w_2 respectivement, le sous-espace de vide [5] est de dimension 2.