Quasi-Unitary Algebras Attached to Temperature States in Statistical Mechanics. A Comment on the Work of Haag, Hugenholtz and Winnink

D. KASTLER University of Aix-Marseille

J. C. T. POOL

Applied Mathematics Division, Argonne National Laboratory and II. Institut für Theoretische Physik, Universität Hamburg

E. THUE POULSEN

Matematisk Institut, Aarhus Universitet

Received October 21, 1968

Abstract. We show that the *-algebra of "analytic elements" with respect to time translations which plays a central role in HAAG, HUGENHOLTZ and WINNINK'S formulation of the Kubo-Martin-Schwinger boundary condition, is a quasi-unitary algebra in the sense of DIXMIER. The commutant theorem proved by HAAG, HUGENHOLTZ and WINNINK is thus reduced to DIXMIER'S commutant theorem for quasi-unitary algebras.

1. Introduction

In a very interesting paper [1] (referred to below as HHW), HAAG, HUGENHOLTZ and WINNINK describe general features of the equilibrium states of quantum statistical mechanics at finite temperature. A state is viewed as normalized positive linear functional ω on a C^* -algebra \mathfrak{A} of quasi-local observables. Time evolution is described by a one-parameter group, $t \to \alpha_t$, of automorphisms of \mathfrak{A} . An algebraic formulation of the Kubo-Martin-Schwinger [2, 3] boundary condition is given as a property of equilibrium states with respect to the time-development automorphisms. Furthermore, it is shown that, in contrast to the zero temperature situation, the representation of \mathfrak{A} obtained from an equilibrium state ω by means of the Gelfand-Segal construction is reducible, the corresponding weak closure being one-to-one with its commutant.

The main mathematical tool in HHW is a norm-dense *-subalgebra $\tilde{\mathfrak{A}}$ of "analytic elements" of \mathfrak{A} . The purpose of the present note is two-fold. First, we fix some points of rigor in HHW using the necessary amount of vectorial distributions: to each C^* -algebra \mathfrak{A} with an abelian ¹³ Commun.math.Phys.Vol.12