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Abstraet. It is shown that any complex Banach algebra with hermitean in-
volution and the weak C*-property |x|2 = |#?| for all & = a* is a C*-algebra.

Among all complex Banach algebras with involution the C*-algebras
are singled out by a very strong condition on the norm. Oxo [1],
Vipav [2] and more recently BErRKsoN [3] were able to replace the
original Gelfand-Naimark axioms by considerably weaker assumptions.
In this note we present a new proof for generalizations of the results in
[2] and [3]. In particular we shall study complex Banach algebras
with involution * and norm | |, which also satisfy:

a) the involution is hermitean and

b) |z = |@|? for all © €2U,.

Here 2, denotes the system of hermitean elements of 2[. We shall show
that in this case 2 is a C*-algebra. In contradistinction to [2] and [3]
we shall not assume the existence of an identity. We also do not assume
the involution to be isometric. This result is of importance in algebraic
physics, because we only assume conditions on the hermitean elements,
which correspond to observables. Mathematically our result shows that
the C*-property is a local property.

The terminology of [4] will be used throughout this paper. We begin
with the simpler case of a commutative Banach algebra.

Theorem 1. Any complex commutative Banach algebra A with involu-
tion, which satisfies a) and b) is a C*-algebra.

Proof. i) Because of a)  is symmetric. Thus its *-radical R consists
of all » with Spra* = {0}. This implies by b) R = {x|aa* = a*z = 0}
= {0}. Thus U is *-semi simple, and the Gelfand representation defines
an isomorphism of U with an algebra of functions QY. The supremum
norm of B can be carried back to A and defines an auxiliary norm | |,
which makes 2 an A*-algebra. Because of b) we have ||, = || for all
€y Thus ||, < 2| < Lo + o*|+ Lo — a¥ = L |z + o¥|p + lz—a%,
= 2 ||, and we see that | |, and | | are equivalent. In particular 2
equipped with | |, is a C*-algebra.
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