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Abstract. We provide a method of embedding a (7*-algebra j / i n a (7*-algebra
s/~ called its σ-envelope. $t~ is contained in the enveloping algebra of J / but is
generally much smaller, and if si is commutative with identity then «s/~ can be
identified with the algebra of bounded Baire functions on the spectrum of si.
The main result is to completely determine the structure of jâ ~ for all separable
G. C. R. algebras si. This provides a good basis for a non-commutative theory of
probability.

1. Introduction

We obtain a canonical procedure for embedding a C*-algebra s/ in
a (7*-algebra «&/~ which has the property that every self-adjoint element
of s/~ has a spectral decomposition in J / ~ . The algebra si~ is a sub-
algebra of the enveloping algebra j / * * and in the case where si is a
commutative O*-algebra with identity, $t~ can be identified with the
(7*-algebra of all bounded Baire functions on the spectrum of si. In the
general case our work can be regarded as providing a basis for a non-
commutative version of measure theory.

We undertake a close analysis of the structure of the algebra si~ and
show that it is closely related to the Borel structures of the spectrum si
of si. In the case where si is a separable G.C.R. algebra we can explicitly
write down the structure of si~ (Theorem 4.5). This provides us with
a non-commutative generalization of the idea of a standard Borel
space [9]. As a particular application we analyse the space of finite
positive traces on a separable G.C.R. algebra.

If si is a separable G.C.R. algebra, the set 8P of projections in s/~
forms a σ-complete orthocomplemented lattice. In a further paper we
shall show how this observation allows us to relate our theory to Mackey's
formulation of quantum mechanics [10], by letting SP be the partially
ordered set of questions in some quantum mechanical system. Slightly
different work along these lines is being done by R. J . PLYMEN [12].
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