Statistical Mechanics of Lattice Systems

G. GALLAVOTTI and S. MIRACLE-SOLE* Institut des Hautes Etudes Scientifiques 91. Bures-sur-Yvette — France

Received March 25, 1967

Abstract. We study the thermodynamic limit for a classical system of particles on a lattice and prove the existence of infinite volume correlation functions for a "large" set of potentials and temperatures.

§ 1. Introduction and Notations

In this article we shall study the statistical mechanics of a classical system on a ν -dimensional lattice Z^{ν} . We assume that at each lattice point there can be either 0 or 1 particle. We suppose that the particles interact through symmetric translationally invariant many body potentials $\Phi^{(k)}(x_1 \ldots x_k)$. Let $X = \{x_1, \ldots, x_N\}$ be a finite subset of Z^{ν} , then the potential energy U of N particles located at x_1, x_2, \ldots, x_N is:

$$U(X) = \sum_{k=1}^{\infty} \frac{1}{k!} \sum_{(i_1, \dots, i_k) \in \{1, \dots, N\}}^{\pm} \Phi^{(k)}(x_{i_1}, \dots, x_{i_k})$$
(1)

where $\sum_{i=1}^{+\infty}$ extends over all k-ples i_1, \ldots, i_k of distinct indices (between 1 and N); in particular $U(\emptyset) = 0$. We shall consider only interactions $\Phi = (\Phi^{(k)})_{k \ge 1}$ such that

$$\|\Phi\| = \sum_{k=1}^{\infty} \frac{1}{k!} \sum_{0=x_1,\dots,x_{k-1} \in Z^p}^{+} |\Phi^{(k)}(0, x_1, \dots, x_{k-1})| < +\infty$$
(2)

where the second sum extends over all (k-1)-ples x_1, \ldots, x_{k-1} of distinct lattice points different from the origin 0 of Z^r . With respect to the norm (2) the set \mathscr{B} of interactions Φ such that $\|\Phi\| < +\infty$ is a (real) Banach space.

§ 2. Definitions and Inequalities

From (1) and (2) we deduce the following stability property:

$$|U(\{x_1, \ldots, x_N\})| \leq N ||\Phi||$$
 (3)

We define a subspace \mathscr{B}' of \mathscr{B} by

$$\mathscr{B}' = \{ \varPhi \in \mathscr{B} : \varPhi^{(1)} = 0 \}$$
.

We may write $\Phi = (-\mu, \Phi')$ for every $\Phi \in \mathscr{B}$ with $\mu = -\Phi^{(1)}$ and $\Phi' \in \mathscr{B}$. We interpret μ as chemical potential and denote by U' the potential energy corresponding to Φ' .

^{*} On partial leave from the University of Aix-Marseille.

²² Commun. math. Phys., Vol. 5