On some Groups of Automorphisms of Physical Observables

G. F. DELL'ANTONIO* Institut des Hautes Etudes Scientifiques Bures-sur-Yvette and Courant Institute of Mathematical Sciences New York Received December 20, 1965

Abstract. Given a weakly continuous one-parameter group of automorphisms of a C^* -algebra \mathfrak{A} of operators on a Hilbert space we show that it is implementable by a strongly continuous one-parameter group of unitary operators belonging to the weak closure of \mathfrak{A} , provided that a certain condition — akin to the boundedness from below of the spectrum of the generators — is satisfied.

In recent years, some results have been obtained on special oneparameter groups of automorphisms of a set of observables.

Consider, in particular, the case in which the observables are represented in a Hilbert space \mathscr{H} by the weak closure \mathfrak{A}^- of the union of algebras associated with bounded space-time regions. Let the group of translations in the direction a_{μ} be induced by a strongly continuous one-parameter group of unitary operators on \mathscr{H} , with generator $T_{a_{\mu}}$. In this framework, ARAKI [1] has shown that if $T_{a_{\mu}}$ has spectrum bounded below and if the lowest point in the spectrum corresponds to at least one eigenvector $\xi \in \mathscr{H}$, then $T_{a_{\mu}}$ is affiliated to \mathfrak{A}^- (in the sense that each projection of $T_{a_{\mu}}$ belongs to \mathfrak{A}^-).

When the generator T is bounded, the infinitesimal form of a group of automorphisms is a derivation of \mathfrak{A}^- induced by T^1 .

Recently, KADISON [2] has proved the following remarkable theorem: **Theorem** α . Let \mathfrak{A} be a C^* -algebra² of operators on a Hilbert space \mathscr{H} and let $\delta: A \to \delta(A)$ be a derivation of \mathfrak{A} . Then there exists a bounded operator T in \mathfrak{A}^- (the weak closure of \mathfrak{A}) such that $\delta(A) = [A, T]$ for all $A \in \mathfrak{A}$.

An immediate consequence is

* On leave from the Istituto di Fisica Teorica, Universitá di Napoli.

¹ A derivation of an algebra \mathfrak{A} is a linear map δ from \mathfrak{A} to \mathfrak{A} such that $\delta(AB) = \delta(A) \cdot B + A \cdot \delta(B)$ for all $A, B \in \mathfrak{A}$. If \mathfrak{A} is an algebra of operators on a Hilbert space \mathscr{H} and T is a bounded operator, and if $[A, T] \in \mathfrak{A}$ for all $A \in \mathfrak{A}$, then the map δ_T defined by $\delta_T(A) \equiv [A, T]$ is a derivation of \mathfrak{A} , which is said to be induced by T.

² For definitions and some results on C^* -algebras, see e.g., DIXMIER, les C^* -algebres et leur representations, Gauthier-Villars, Paris, 1964.