The Schrödinger Equation for Quantum Fields with Nonlinear Nonlocal Scattering*

JAMES GLIMM

Department of Mathematics Massachusetts Institute of Technology, Matematisk Institut, Aarhus Universitet

Received February 18, 1966

Abstract. This paper considers perturbations $H = H_0 + \varepsilon V$ of the Hamiltonian operator H_0 of a free scalar Boson field. V is a polynomial in the annihilation creation operators. Terms of any order are allowed in V, but point interactions, such as $\int : \theta(x)^4 : dx$, are not considered. Unnormalized solutions for the Schrödinger equation are found. For $\varepsilon \to 0$, these solutions have a partial asymptotic expansion in powers of ε . The set of all possible pertubation terms V forms a Lie algebra. General properties of this Lie algebra are investigated.

§ 1. Introduction

We consider Hamiltonian operators of the form

$$H = H_0 + V \tag{1.1}$$

where H_0 is the Hamiltonian for a free field and V is a polynomial in the creation annihilation operators A^{\pm} . By this we mean that V is a finite sum of monomials V_{im} of the form

$$V_{lm} = \int A^+(k_1) \dots A^+(k_l) v_{lm}(k, k') A^-(k'_1) \dots A^-(k'_m) dk dk' . \quad (1.2)$$

We require the kernel v_{im} to be smooth, for example to be in a Schwartz space \mathscr{S} . This paper is partly directed toward studying the Lie algebra formed by such H, and it is partly directed toward solving the Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi = H\Psi . \tag{1.3}$$

We solve (1.3) for quite general V of the above form. (See Theorems 7.3 and 9.1.) We find in §7 a preliminary operator T which intertwines H and H_{0} ,

$$HT = TH_0. (1.4)$$

Then

$$T \exp(-it H_0) \Phi(0) = \Psi(t)$$

Commun. math. Phys., Vol. 2

^{*} This work was supported in part by the National Science Foundation, NSF GP-4364.