A Theorem on Canonical Commutation and Anticommutation Relations

G.-F. Dell'Antonio*

Institut des Hautes Etudes Scientifiques

S. Doplicher

Istituto di Fisica dell'Università, Roma and Institut des Hautes Etudes Scientifiques

D. RUELLE

Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, (S. et O.) France

Received February 7, 1966

Abstract. The aim of this note is to characterize representations of the canonical commutation or anticommutation relations which, on a subspace of the "space of test-functions", reduce to a sum of copies of the Fock representation.

1. Generalities1

Let $\mathscr L$ be a real separated prehilbert space. We assume that $\mathscr L$ is separable. One may in a standard way construct a complex Hilbert space $\mathscr H$ (Fock space) and, for each $f \in \mathscr L$, operators a(f), $a^*(f)$ forming the Fock representation of the canonical commutation relations (CCR) or anticommutation relations (CAR) of $\mathscr L$.

In the case of the CAR the operators a(f), $a^*(f)$ are bounded and the C^* -algebra $\mathfrak A$ associated with the Fock representation of the CAR is defined as the uniform closure of the algebra generated by all operators a(f), $a^*(f)$. In the case of the CCR the operators $\varphi(f) = \frac{1}{\sqrt{2}} \left(a(f) + a^*(f) \right)$ and $\pi(f) = \frac{1}{i\sqrt{2}} \left(a(f) - a^*(f) \right)$ are self-adjoint and one may define the Weyl operators $U(f) = \exp(i\varphi(f))$, $V(f) = \exp(i\pi(f))$. The C^* -algebra $\mathfrak A$ associated with the Fock representation of the CCR is defined as the uniform closure of the algebra generated by all operators U(f), V(f). $\mathfrak A$ is irreducible and contains the identity operator $\mathfrak A$ of $\mathcal H$.

A (CCR or CAR) representation of \mathcal{L} in a complex Hilbert space \mathfrak{H} is defined by a *-homomorphism γ of \mathfrak{A} into the bounded operators on \mathfrak{H} such that $\gamma(1)$ is the identity on \mathfrak{H} and, in the case of the CCR the

^{*} Present address: Courant Institute of Mathematical Science, N. Y. U.

¹ For a general description of CCR and CAR see GARDING and WIGHTMAN [4]; for CCR see Lew [5] and references given there to earlier work, in particular by Segal; for C*-algebras see DIXMIER [3].