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NUMERICAL REPRESENTATIONS OF A UNIVERSAL SUBSPACE

FLOW FOR LINEAR PROGRAMS∗

P.-A. ABSIL†

Abstract. In 1991, Sonnevend, Stoer, and Zhao [Math. Programming 52 (1991) 527–553] have

shown that the central paths of strictly feasible instances of linear programs generate curves on the

Grassmannian that satisfy a universal ordinary differential equation. Instead of viewing the Grass-

mannian Gr(m, n) as the set of all n×n projection matrices of rank m, we view it as the set R
n×m

∗ of

all full column rank n×m matrices, quotiented by the right action of the general linear group GL(m).

We propose a class of flows in R
n×m

∗ that project to the flow on the Grassmannian. This approach

requires much less storage space when n ≫ m (i.e., there are many more constraints than variables

in the dual formulation). One of the flows in R
n×m

∗ , that leaves invariant the set of orthonormal

matrices, turns out to be a particular version of a matrix differential equation known as Oja’s flow.

We also point out that the flow in the set of projection matrices admits a double bracket expression.
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1. Introduction. One of Roger Brockett’s major contributions to date has been

to propose and analyze the matrix differential equation [Bro91]

(1) H ′(t) = [H(t), [H(t), N ]], H(0) = H0,

where N and H0 are n × n real symmetric matrices and [A, B] := AB − BA denotes

the matrix commutator. This matrix flow belongs to a class of flows on manifolds

that realize computational algorithms. It is able to solve the eigenvalue problem of

a symmetric matrix A (see [Bro91], or [HM94, §2.1], [Deh95, §4.2]): to this end,

choose H0 = A and N = diag(µ1, . . . , µn) with µ1 > · · · > µn; then limt→∞H(t) H(t)

exists and is a diagonal matrix, whose diagonal elements are the eigenvalues of A

since the flow is isospectral (i.e., the spectrum of H does not vary along the tra-

jectory). The differential equation (1) is also capable of sorting lists: if N is cho-

sen, for example, as diag(1, 2, . . . , n), then for almost all orthogonal n × n matri-

ces Θ and for H(0) = ΘT [diag(λ1, λ2, . . . , λn)]Θ, the solution of (1) will approach

H(∞) = diag(λπ(1), λπ(2), . . . , λπ(n)) with the final list sorted by size. Brockett also
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