ON THE NUMBER OF CONNECTED COMPONENTS IN THE SPACE OF CLOSED NONDEGENERATE CURVES ON \mathbf{S}^{n}

B. Z. SHAPIRO AND M. Z. SHAPIRO

The main definition. A parameterized curve $\gamma: \mathbf{I} \rightarrow \mathbf{R}^{n}$ is called nondegenerate if for any $t \in \mathbf{I}$ the vectors $\gamma^{\prime}(t), \ldots, \gamma^{(n)}(t)$ are linearly independent. Analogously $\gamma: \mathbf{I} \rightarrow \mathbf{S}^{n}$ is called nondegenerate if for any $t \in I$ the covariant derivatives $\gamma^{\prime}(t), \ldots, \gamma^{(n)}(t)$ span the tangent hyperplane to \mathbf{S}^{n} at the point $\gamma(t)$ (compare with the notion of n-freedom in [G]).

Fixing an orientation in \mathbf{R}^{n} or \mathbf{S}^{n} we call a nondegenerate curve γ right-oriented if the orientation on \mathbf{S}^{n} induced by γ^{\prime}, \ldots, $\gamma^{(n)}$ coincides with the given one and left-oriented otherwise.

Nondegenerate curves on \mathbf{S}^{n} are closely related with linear ordinary differential equations of $(n+1)$ th order. Such an equation defines two nondegenerate curves on $\mathbf{S}^{n} \subset V^{(n+1)^{*}}$, where $V^{(n+1)^{*}}$ is the $(n+1)$-dimensional vector space dual to the space of solutions as follows. For each moment $t \in \mathbf{I}$ we choose the linear hyperplane in V^{n+1} of all solutions vanishing at t i.e. thus obtaining a unique curve in the projective space \mathbf{P}^{n} as t varies. Raising it to \mathbf{S}^{n} we obtain a pair of curves; both of them are right-oriented if n is odd and have opposite orientations if n is even (nondegeneracy follows from nonvanishing of its Wronskian).

A nondegenerate curve $\gamma:[0,1] \rightarrow \mathbf{S}^{n}$ defines a monodromy operator $M \in \mathbf{G L}_{n+1}^{+}$which maps $\gamma(0), \gamma^{\prime}(0), \ldots, \gamma^{(n)}(0)$ to $\gamma(1)$, $\gamma^{\prime}(1), \ldots, \gamma^{(n)}(1)$.

The paper [K-O] contains a complete set of invariants for symplectic leaves of the second Gelfand-Dikki bracket; namely the leaves are enumerated by pairs consisting of a monodromy operator, and a connected component of the space of right-oriented curves in the sphere with the given monodromy operator.

[^0]
[^0]: Received by the editors September 25, 1989 and, in revised form, November 23, 1990.

 1980 Mathematics Subject Classification (1985 Revision). Primary 53A04.

