ON THE NUMBER OF CONNECTED COMPONENTS IN THE SPACE OF CLOSED NONDEGENERATE CURVES ON S^n

B. Z. SHAPIRO AND M. Z. SHAPIRO

The main definition. A parameterized curve $\gamma: \mathbf{I} \to \mathbf{R}^n$ is called nondegenerate if for any $t \in \mathbf{I}$ the vectors $\gamma'(t), \ldots, \gamma^{(n)}(t)$ are linearly independent. Analogously $\gamma: \mathbf{I} \to \mathbf{S}^n$ is called nondegenerate if for any $t \in I$ the covariant derivatives $\gamma'(t), \ldots, \gamma^{(n)}(t)$ span the tangent hyperplane to \mathbf{S}^n at the point $\gamma(t)$ (compare with the notion of *n*-freedom in [G]).

Fixing an orientation in \mathbf{R}^n or \mathbf{S}^n we call a nondegenerate curve γ right-oriented if the orientation on \mathbf{S}^n induced by $\gamma', \ldots, \gamma^{(n)}$ coincides with the given one and left-oriented otherwise.

Nondegenerate curves on \mathbf{S}^n are closely related with linear ordinary differential equations of (n+1) th order. Such an equation defines two nondegenerate curves on $\mathbf{S}^n \subset V^{(n+1)^*}$, where $V^{(n+1)^*}$ is the (n + 1)-dimensional vector space dual to the space of solutions as follows. For each moment $t \in \mathbf{I}$ we choose the linear hyperplane in V^{n+1} of all solutions vanishing at t i.e. thus obtaining a unique curve in the projective space \mathbf{P}^n as t varies. Raising it to \mathbf{S}^n we obtain a pair of curves; both of them are right-oriented if n is odd and have opposite orientations if n is even (nondegeneracy follows from nonvanishing of its Wronskian).

A nondegenerate curve $\gamma: [0, 1] \to \mathbf{S}^n$ defines a monodromy operator $M \in \mathbf{GL}_{n+1}^+$ which maps $\gamma(0), \gamma'(0), \ldots, \gamma^{(n)}(0)$ to $\gamma(1), \gamma'(1), \ldots, \gamma^{(n)}(1)$.

The paper [K-O] contains a complete set of invariants for symplectic leaves of the second Gelfand-Dikki bracket; namely the leaves are enumerated by pairs consisting of a monodromy operator, and a connected component of the space of right-oriented curves in the sphere with the given monodromy operator.

Received by the editors September 25, 1989 and, in revised form, November 23, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53A04.