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THE CLASSICAL TRILOGARITHM, 
ALGEBRAIC ^-THEORY OF FIELDS, 
AND DEDEKIND ZETA FUNCTIONS 

A. B. GONCHAROV 

ABSTRACT. In this paper we show how to express the values 
of fF(3) for arbitrary number field F in terms of the triloga-
rithms (D. Zagier's conjecture) and how to relate this result to 
algebraic K-theory. 

1. THE CLASSICAL POLYLOGARITHM FUNCTION 

The classical polylogarithm function 
n 

(1.1) Up(z) := ^ ^ ( 2 € C , | 2 | < l , p € N ) 
n-\ 

during the last 200 years was the subject of much research—see [L]. 
Using the inductive formula Li (z) = J^lAp_{(t)t~

xdt, Lij(z) = 
-log(l - z), the /7-logarithm can be analytically continued to a 
multivalued function on C\{0, 1}. However, D. Wigner and S. 
Bloch introduced [Bl] the single-valued cousin of the dilogarithm, 
namely 

(1.2) D2{z) := Im(Li2(z)) + arg(l - z) • log|z|. 

Of course, for Lit such function is - l og | z | . Analogous func­
tions D (z) for p > 3 were introduced in [R] and computed 
explicitly in [Z]. Let us consider the slightly modified function 

(1.3) ^ 3 (z ) := Re [Li3(z) - log|z| -Li2(z) + ±log2 \z\ -Li^z)] . 

Such modified functions were considered also for all p by 
D. Zagier, A. A. Beilinson and P. Deligne [Z3, Bel]. ~S^(z) is 
real-analytic on CPl\{0, 1, oo} and continuous on CP{. 

Let F be a field. Let PX
F be the projective line over F, and 

let Z[Pp\0, 1, oo] be the free abelian group generated by symbols 
{x} , where x G Pl

F{Q, 1, oo} . 
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