RAMANUJAN GRAPHS AND HECKE OPERATORS

ARNOLD K. PIZER

0. Introduction

We associate to the Hecke operator T_{p}, p a prime, acting on a space of theta series an explicit $p+1$ regular Ramanujan graph G having large girth. Such graphs have high "magnification" and thus have many applications in the construction of networks and explicit algorithms (see [LPS1] and Bien's survey article [B]). In general our graphs do not seem to have quite as large a girth as the Ramanujan graphs discovered by Lubotzky, Phillips, and Sarnak ([LPS1, LPS3]) and independently by Margulis ([M]). However, by varying the T_{p} and the spaces of theta series, we obtain a much larger family of interesting graphs. The trace formula for the action of the Hecke operators $T_{p^{r}}$ immediately yields information on certain closed walks in G and in particular on the girth of G. If m is not a prime, we obtain "almost Ramanujan" graphs associated to T_{m}.

The results of this paper can be viewed as an explicit version of a generalization of a construction of Ihara (see [I] and Theorem 4.1 of [LPS2]). From this viewpoint the connection between our results and those of Lubotzky, Phillips, and Sarnak becomes clearer. Recently, Chung ([C]) and Li ([L]) also constructed Ramanujan graphs associated to certain abelian groups.

1. Graphs

Let G be a multigraph (i.e., we allow loops and multiple edges) with n vertices v_{i} and edges e_{j}. A walk W on G is an alternating sequence of vertices and edges $v_{0} e_{1} v_{1} e_{2} v_{2} \ldots e_{r} v_{r}$ where each edge e_{j} has endpoints v_{j-1} and v_{j}. We say W is a walk from v_{0} to v_{r} of length r. W is closed if and only if $v_{r}=v_{0}$. A walk is said to be without backtracking (a w.b. walk) if a "point can transverse the walk without stopping and backtracking." The only

[^0]
[^0]: Received by the editors May 25, 1989 and, in revised form, December 5, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 05C35; Secondary 11F25.

