RAMANUJAN GRAPHS AND HECKE OPERATORS

ARNOLD K. PIZER

0. INTRODUCTION

We associate to the Hecke operator T_p , p a prime, acting on a space of theta series an explicit p + 1 regular Ramanujan graph G having large girth. Such graphs have high "magnification" and thus have many applications in the construction of networks and explicit algorithms (see [LPS1] and Bien's survey article [B]). In general our graphs do not seem to have quite as large a girth as the Ramanujan graphs discovered by Lubotzky, Phillips, and Sarnak ([LPS1, LPS3]) and independently by Margulis ([M]). However, by varying the T_p and the spaces of theta series, we obtain a much larger family of interesting graphs. The trace formula for the action of the Hecke operators $T_{p'}$ immediately yields information on certain closed walks in G and in particular on the girth of G. If m is not a prime, we obtain "almost Ramanujan" graphs associated to T_m .

The results of this paper can be viewed as an explicit version of a generalization of a construction of Ihara (see [I] and Theorem 4.1 of [LPS2]). From this viewpoint the connection between our results and those of Lubotzky, Phillips, and Sarnak becomes clearer. Recently, Chung ([C]) and Li ([L]) also constructed Ramanujan graphs associated to certain abelian groups.

1. GRAPHS

Let G be a multigraph (i.e., we allow loops and multiple edges) with n vertices v_i and edges e_j . A walk W on G is an alternating sequence of vertices and edges $v_0 e_1 v_1 e_2 v_2 \dots e_r v_r$ where each edge e_j has endpoints v_{j-1} and v_j . We say W is a walk from v_0 to v_r of length r. W is closed if and only if $v_r = v_0$. A walk is said to be without backtracking (a w.b. walk) if a "point can transverse the walk without stopping and backtracking." The only

Received by the editors May 25, 1989 and, in revised form, December 5, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 05C35; Secondary 11F25.