NOT ALL LINKS ARE CONCORDANT TO BOUNDARY LINKS

T. D. COCHRAN AND K. E. ORR

0. Introduction

A link is a smooth, oriented submanifold $L=\left\{K_{1}, \ldots, K_{m}\right\}$ of S^{n+2} which is the ordered disjoint union of m manifolds each piecewise-linearly homeomorphic to the n-sphere (if $m=1, L$ is called a knot). Knots and links play an essential role in the classification of manifolds and, in this regard, perhaps the most important equivalence relation on links is that of link concordance. L_{0} and L_{1} are concordant if there is a smooth, oriented submanifold $C=\left\{C_{1}, \ldots, C_{m}\right\}$ of $S^{n+2} \times[0,1]$ which meets the boundary transversely in ∂C, is piecewise-linearly homeomorphic to $L_{0} \times[0,1]$ and meets $S^{n+2} \times\{i\}$ in L_{i} for $i=0,1$. The particular situation which led to the introduction of this equivalence relation and which indicates its importance is as follows. If S is an immersed 2-disk or 2-sphere in a 4-manifold X, x_{0} is a singular value and B is a small 4-ball neighborhood of x_{0}, then $S \cap B$ is a link in S^{3}. If L were concordant to a link whose components bound disjoint 2-disks in S^{3} (the latter is called a trivial link) then the singularity at x_{0} could be removed. Thus the fundamental problem is to classify (for fixed m, n) the set of concordance classes.

In the mid-1960s M. Kervaire and J. Levine gave an algebraic classification of the high-dimensional ($n>1$) knot concordance groups [L2]. For even n these are the trivial group and for odd n they are infinitely generated. In a sequence of papers S. Cappell

[^0]
[^0]: Received by the editors September 15, 1989 and, in revised form, December 5, 1989.

 1980 Mathematics Subject Classification (1985 Revision). Primary 57Q45; Secondary 57M25, 57R67, 19G12.

 Key words and phrases. Link, link cobordism, concordance, boundary link, homology, cobordism.

 The first author was partially supported by National Science Foundation grant DMS-8903514.

 The second author was partially supported by National Science Foundation Postdoctoral Fellowship.

