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matrix ideal) from a semifir is considered. There are some nice results 
here. For example it is shown that the group algebra of a free group is a 
fir (there are other proofs) and that the algebra of rational power series is 
also a fir. 

The notes at the end of each chapter give a good account of the history 
of the subject. The exercises are plentiful, and range from fairly difficult 
to open problems (the reader is warned of which category he is dealing 
with). 

This text is an invaluable tool for the researcher and the diligent reader 
will find it quite rewarding. The reader interested in more examples and 
applications (some spectacular) is directed to Cohn's companion volume 
[1], and especially to Schofield's lovely monograph [2]. Both of these give 
accounts of Bergman's indispensable coproduct theorems. 
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Most of us, mathematicians or not, playing with pennies or a compass at 
an early age, learnt that six circles fit exactly round an equal one; and most 
of us, whether we have the mathematical language or not, know that you 
can't do better: each outer circle subtends just one sixth of a revolution 
at the centre of the inner one. The kissing number, in two dimensions, is 
six. 

In three dimensions the situation is much less clear. A theorem of 
Archimedes tells us that the solid angle subtended by one sphere at the 
centre of an equal touching sphere is (2 - y/î)n. Divide this into An and 
get 8 + 4v

/3, so the kissing number in three dimensions is less than 15. 
But it's clear, when you try to arrange billiard balls round another one, 
that you have to leave holes: you can always stare through the interstices 
at the central ball. It's not difficult, by taking this into account, to see that 
the kissing number is less than 14, but to prove that it is less than 13 is 
far from trivial. Indeed, as eminent mathematicians as David Gregory 
and Isaac Newton had an inconclusive discussion about it in 1694. The 


