
BOOK REVIEWS 101 

being the excellent books they are, I obtained copies before they were 
offered to me for review. Ah well! 
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The idea of a separation of scales is of fundamental importance in our 
attempts to understand the world. When we speak of movement up or 
down "on the average," we are appealing to a process which removes rapid 
fluctuations and uncovers underlying trends. The formal perturbation pro
cedure known as the method of multiple scales (or, in its simplest form, 
two-timing) relies on such a separation of time scales, as do the various 
averaging and homogenization theorems which make up an important part 
of the theory of differential equations and which form the subject of the 
book under review. 

The simplest form of averaging, over a single time scale, proceeds as 
follows. Starting with a sufficiently smooth vector field f(x, t) on Rn x R 
which depends ^-periodically on time, t, the averaged vector field is defined 
as 

(0) f(*) = j j f(x,t)dt. 


