EXOTIC KNOTTINGS OF SURFACES IN THE 4-SPHERE

S. M. FINASHIN, M. KRECK AND O. YA. VIRO

1. The main result.

THEOREM. There exists an infinite series S_1, S_2, \ldots of smooth submanifolds of S^4 such that:

(1) for any i, j the pairs (S^4, S_i) , (S^4, S_j) are homeomorphic,

(2) for any $i \neq j$ the pairs (S^4, S_i) , (S^4, S_j) are not diffeomorphic,

(3) each S_n is homeomorphic to the connected sum $\#_{10}\mathbf{R}P^2$ of 10 copies of the projective plane,

(4)
$$\pi_1(S^4 \setminus S_n) = \mathbf{Z}_2$$
,

(5) the normal Euler number (with local coefficients) of S_n in S^4 is 16.

Actually we show instead of (1) a slightly stronger result, namely, that there are smooth isomorphisms φ_i of tubular neighborhoods of S_i and S_1 which can be extended to homeomorphisms of the exterior. But according to (2) $\varphi_j^{-1} \circ \varphi_i$ cannot be extended to a diffeomorphism of the exteriors. This is surprising, as there is no analogous result in other dimensions. Let N be a closed smooth submanifold of a closed manifold M of dimension $\neq 4$. Let U be a smooth tubular neighborhood. Then there are only finitely many diffeomorphism types rel. boundary of smooth manifolds X with $\partial X = \partial U$ and X homeomorphic to $M - \hat{U}$. If dim M = 3 the number of diffeomorphism types is 1 and if dim $M \geq 5$ the number of smoothings rel. boundary (which is an upper bound for the number of diffeomorphism types) is finite by [**KS**].

In fact we describe an infinite family F_1, F_2, \ldots of smooth submanifolds of S^4 satisfying conditions (2)–(5) of the Theorem, and we prove that there are only finitely many homeomorphism types of (S^4, F_n) in the sense described above.

The F_n 's are obtained from a fixed smooth submanifold $F \subset S^4$ by a family of new knotting constructions. F is the obvious simplest submanifold satisfying the conditions (3), (4), and (5): the pair (S^4, F) is the connected sum of the standard pair $(S^4, \mathbb{R}P^2)$ (with normal Euler number -2) and nine copies of it with the orientation of S^4 reversed.

Our knotting constructions can be applied to "smaller" submanifolds, e.g. the Klein bottle with normal Euler number 0 and the torus, which are standardly embedded in S^4 . The only thing we fail to prove in these situations is the nonexistence of diffeomorphisms.

©1987 American Mathematical Society 0273-0979/87 \$1.00 + \$.25 per page

Received by the editors June 15, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 57Q45, 57R55, 57N35; Secondary 57M25, 57M12.

Second author partially supported by the DFG and the Academy of Science of the USSR.