A NOTE ON CALDERÓN-ZYGMUND SINGULAR INTEGRAL CONVOLUTION OPERATORS

JOAQUIM BRUNA AND BORIS KORENBLUM

The purpose of this note is to show that the notion of weak maximal function introduced in [1] (see also [4], where a similar notion is considered) can be used to obtain some new information on the Calderón-Zygmund singular integral convolution operator.

We will follow the notations of [3]. Let K be a kernel in \mathbb{R}^n of class C^1 outside the origin satisfying

$$|K(x)| \le C|x|^{-n},$$

$$|\nabla K(x)| \le C|x|^{-n-1}.$$

For $\varepsilon > 0$ and $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$, set

$$T_{\varepsilon}(f)(x) = \int_{|y| \ge \varepsilon} f(x-y)K(y) \, dy$$

and

$$T(f)(x) = \lim_{\varepsilon \to 0} T_{\varepsilon}(f)(x), \qquad T^*(f)(x) = \sup_{\varepsilon > 0} |T_{\varepsilon}(f)(x)|.$$

We will assume that K satisfies the usual properties ensuring that the mapping $f \mapsto T^*(f)$ is of weak type (1,1) and that T(f)(x) makes sense for a.e. x.

The notation $L^{1,\infty}$ will stand for the space of weak L^1 functions, and if $\varphi \in L^{1,\infty}$ and B is a ball we write

$$||\varphi||_{1,\infty}^B = \sup_{\delta>0} \delta m(\{x \in B: |\varphi(x)| > \delta\})$$

for the weak L^1 "norm" of φ on B. If $B = \mathbb{R}^n$, we simply write $||\varphi||_{1,\infty}$. The weak maximal function introduced in [1] is defined for $\varphi \in L^{1,\infty}$ by

$$M_w arphi(x) = \sup_{x \in B} rac{||arphi||^B_{1,\infty}}{m(B)},$$

the supremum being taken over all balls centered at x. The notation $M_w^m \varphi$ stands for the function obtained by applying m times the operator M_w , whenever this makes sense. In [1] it was already pointed out that for any m there is a $\varphi \in L^{1,\infty}$ such that $M_w^j \varphi \in L^{1,\infty}$ for $j = 1, \ldots, m$ but $M_w^{m+1} \varphi \notin L^{1,\infty}$. However, for $\varphi = Tf$, $f \in L^1$, the following holds:

©1987 American Mathematical Society 0273-0979/87 \$1.00 + \$.25 per page

Received by the editors May 20, 1986 and, in revised form, May 31, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 42B20.

First author supported by grant No. 1593/82 of the Comisión Asesora de Investigación Cientifica y Técnica, Madrid.

Second author supported by NSF grant DMS-8600699.