CONTINUED FRACTALS AND THE SEIFERT CONJECTURE

BY JENNY HARRISON ${ }^{1}$

In 1950 Herbert Seifert posed a question today known as the Seifert Conjecture:
"Every C^{r} vector field on the three-sphere has either a zero or a closed integral curve."

Paul Schweitzer published his celebrated C^{1} counterexample in $1971[\mathbf{S c h}]$. We show how to obtain a $C^{3-\varepsilon}$ counterexample X by using techniques from number theory, analysis, fractal geometry, and differential topology [H1 and H2]. X is C^{2} and its second derivative satisfies a $(1-\varepsilon)$-Hölder condition.

1. Continued fractions and quasi-circles. Any irrational number α, $0<\alpha<1$, can be expressed as a continued fraction

where the a_{i} are positive integers. One writes $\alpha=\left[a_{1}, a_{2}, a_{3}, \ldots\right]$. The truncation $\left[a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ is the best approximation to α among all rational numbers p / q with $0<q \leq q_{n}$. The growth rate of the a_{i} tells "how irrational" $\alpha=\left[a_{i}\right]$ is. At one extreme is the Golden Mean, $\left.\gamma=[1,1, \ldots]\right)$; at the other are Liouville numbers such as $\lambda=\left[1^{1!}, 2^{2!}, 3^{3!}, \ldots\right]$. The former is "very irrational" while the latter is "almost rational".

To study α dynamically it is standard to consider R_{α}, the rigid rotation of the circle S^{1} of unit length through angle α. Choose $x \in S^{1}$ and consider its R_{α}-orbit $O_{\alpha}(x)$. Since α is irrational, $O_{\alpha}(x)$ is dense in S^{1}. But how is it dense? For Liouville $\lambda, O_{\lambda}(x)$ contains long strings $\left\{R_{\lambda}^{n}(x), R_{\lambda}^{n+1}(x), \ldots\right.$, $\left.R_{\lambda}^{m}(x)\right\}$ that are poorly distributed. They "bunch up". In contrast, the Golden Mean's orbit distributes itself fairly evenly throughout S^{1}.

Unfortunately, it is hard to distinguish visually (and hence geometrically) between bunched-up dense orbits and well distributed ones. After many iterates, the orbit picture becomes blurred. This is due in fact to the picture's being drawn on the circle. As a remedy, we "unfold" S^{1} onto a canonically constructed curve Q_{α} in the 2 -sphere S^{2} as follows.

Choose a "Denjoy" projection $\rho: S^{1} \rightarrow S^{1}$; that is, ρ is onto and continuous, $\rho^{-1}\langle n \alpha\rangle$ is an interval I_{n} for all $n \in \mathbf{Z}$, the I_{n} are disjoint, and ρ is 1-1

[^0]
[^0]: Received by the editors January 13, 1982 and, in revised form, April 25, 1985.
 1980 Mathematics Subject Classification. Primary 58F25, 34C35, 10 K 10.
 ${ }^{1}$ Partially supported by NSF grant no. MCS-8302062.

