SIMPLE CLOSED GEODESICS ON $H^{+} / \Gamma(3)$ ARISE FROM THE MARKOV SPECTRUM

BY J. LEHNER AND M. SHEINGORN

1. Let

$$
H^{+}=\{z=x+i y: y>0\}
$$

be the complex upper half-plane, and let

$$
\Gamma(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv \pm\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod n) ; a, b, c, d \in \mathbf{Z}, a d-b c=1\right\}
$$

be the principal congruence subgroup of level n in the modular group $\operatorname{SL}(2, \mathbf{Z})$ $=\Gamma(1)$. In this note we are concerned with $\Gamma(3)$. Let S be the Riemann surface $H^{+} / \Gamma(3)$ and let $\pi: H^{+} \rightarrow S$ be the projection map. S is a sphere with four punctures.

A hyperbolic element γ is a Möbius transformation of H^{+}that has two real fixed points; its axis A_{γ} is the circle with center on \mathbf{R} connecting the fixed points. Write $\xi_{\gamma}, \xi_{\gamma}^{\prime}$ for the fixed points of γ. If $\gamma \in \Gamma(3)$ is hyperbolic, A_{γ} projects to a closed geodesic on S; conversely, every closed geodesic on S arises in this way. A simple closed geodesic is one that does not intersect itself.

The Markov Spectrum will be described in detail in $\S 2$. Here we note the definition of the Markov function $M(\theta)$. For real irrational θ set

$$
\begin{array}{r}
M(\theta)=\sup \left\{c>0:|\theta-p / q|<1 / c q^{2}\right. \text { for infinitely } \tag{1.1}\\
\text { many reduced fractions } p / q\} .
\end{array}
$$

In the range $M(\theta)<3, M$ assumes only a denumerably infinite set of values $M_{\nu} \uparrow 3$. The numbers M_{ν} constitute the Markov Spectrum, which we denote by MS.

The connection between simple closed geodesics on S and MS is established in the following way. For $\beta \in \Gamma(3)$ write $A_{\gamma} \wedge \beta A_{\gamma}$ to mean $A_{\gamma} \cap \beta A_{\gamma} \neq \varnothing, A_{\gamma}$, i.e., the intersection is a single point in H^{+}. The following criterion is easy to prove:
(1.2) $\pi\left(A_{\gamma}\right)$ is nonsimple if and only if $A_{\gamma} \wedge \beta A_{\gamma}$ for some $\beta \in \Gamma(3)-\langle\gamma\rangle$.

But in this statement we know nothing about β except that if is not elliptic ($\Gamma(3)$ contains no elliptic elements).

THEOREM 1. If $\pi\left(A_{\gamma}\right)$ is nonsimple, there is a parabolic element P in $\Gamma(3)$ such that $A_{\gamma} \wedge P A_{\gamma}$.

Theorem 1 leads directly to the main result:

[^0]1980 Mathematics Subject Classification. Primary 10D05.

[^0]: Received by the editors September 26, 1983 and, in revised form, May 1, 1984.

