SIMPLE CLOSED GEODESICS ON $H^+/\Gamma(3)$ ARISE FROM THE MARKOV SPECTRUM

BY J. LEHNER AND M. SHEINGORN

1. Let

$$H^+ = \{z = x + iy : y > 0\}$$

be the complex upper half-plane, and let

$$\Gamma(n)=\left\{egin{pmatrix}a&b\c&d\end{pmatrix}\equiv\pmegin{pmatrix}1&0\0&1\end{pmatrix}\pmod{n};\ a,b,c,d\in\mathbf{Z},\ ad-bc=1
ight\}$$

be the principal congruence subgroup of level n in the modular group $SL(2, \mathbb{Z}) = \Gamma(1)$. In this note we are concerned with $\Gamma(3)$. Let S be the Riemann surface $H^+/\Gamma(3)$ and let $\pi: H^+ \to S$ be the projection map. S is a sphere with four punctures.

A hyperbolic element γ is a Möbius transformation of H^+ that has two real fixed points; its axis A_{γ} is the circle with center on **R** connecting the fixed points. Write $\xi_{\gamma}, \xi'_{\gamma}$ for the fixed points of γ . If $\gamma \in \Gamma(3)$ is hyperbolic, A_{γ} projects to a closed geodesic on S; conversely, every closed geodesic on S arises in this way. A *simple* closed geodesic is one that does not intersect itself.

The Markov Spectrum will be described in detail in §2. Here we note the definition of the Markov function $M(\theta)$. For real irrational θ set

(1.1)
$$M(\theta) = \sup\{c > 0 \colon |\theta - p/q| < 1/cq^2 \text{ for infinitely} \\ \text{many reduced fractions } p/q\}.$$

In the range $M(\theta) < 3$, M assumes only a denumerably infinite set of values $M_{\nu} \uparrow 3$. The numbers M_{ν} constitute the Markov Spectrum, which we denote by MS.

The connection between simple closed geodesics on S and MS is established in the following way. For $\beta \in \Gamma(3)$ write $A_{\gamma} \wedge \beta A_{\gamma}$ to mean $A_{\gamma} \cap \beta A_{\gamma} \neq |\emptyset, A_{\gamma},$ i.e., the intersection is a single point in H^+ . The following criterion is easy to prove:

(1.2) $\pi(A_{\gamma})$ is nonsimple if and only if $A_{\gamma} \wedge \beta A_{\gamma}$ for some $\beta \in \Gamma(3) - \langle \gamma \rangle$.

But in this statement we know nothing about β except that if is not elliptic ($\Gamma(3)$ contains no elliptic elements).

THEOREM 1. If $\pi(A_{\gamma})$ is nonsimple, there is a parabolic element P in $\Gamma(3)$ such that $A_{\gamma} \wedge PA_{\gamma}$.

Theorem 1 leads directly to the main result:

Received by the editors September 26, 1983 and, in revised form, May 1, 1984. 1980 Mathematics Subject Classification. Primary 10D05.

^{©1984} American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page