ON THE RELATIONS BETWEEN CHARACTERISTIC CLASSES OF STABLE BUNDLES OF RANK 2 OVER AN ALGEBRAIC CURVE

BY P. E. NEWSTEAD

Abstract

We describe a complete set of generators and relations for a certain quotient of the rational cohomology ring of the moduli space of stable bundles of rank 2 and fixed determinant of odd degree over a nonsingular complex algebraic curve. The formulae for the relations apply in any genus and are relatively simple.

1. Introduction. Let $S=U_{L}(2,1)$ denote the moduli space of stable bundles of rank 2 and determinant L of degree 1 over a nonsingular complete algebraic curve X of genus $g \geq 2$ defined over the complex numbers. The Betti numbers of S were determined some time ago in [3], and generators for $H^{*}(S ; Q)$ were given in [4]. Recently there has been renewed interest in obtaining a complete description of $H^{*}(S ; Q)$, particularly in connection with the work of M. F. Atiyah and R. Bott [1, §9]. David Mumford and Dave Bayer have performed some calculations on a computer, which provide evidence in support of some conjectures of Mumford. In this note we use the topological methods of [3, 4] to obtain some information about relations in $H^{*}(S ; Q)$; these provide further support for Mumford's conjectures.
2. The main theorem. We recall the generators for $H^{*}(S ; Q)$ given in [4], namely $\alpha \in H^{2}(S ; Z) ; \psi_{1}, \ldots, \psi_{2 g} \in H^{3}(S ; Z) ; \beta \in H^{4}(S ; Z)$. A little care is needed over the definition of the ψ_{i}. We first choose a symplectic basis $a_{1}, \ldots, a_{2 g}$ for $H^{1}(X ; Z)$ (with respect to the skew-symmetric form given by Poincaré duality); then the ψ_{i} are defined by the equation

$$
\psi=\psi_{1} \otimes a_{1}+\cdots+\psi_{2 g} \otimes a_{2 g}
$$

where ψ is the component in $H^{3}(S ; Z) \otimes H^{1}(X ; Z)$ of the second Chern class of a universal bundle on $S \times X$. We write

$$
\sigma=\psi_{1} \psi_{2}+\cdots+\psi_{2 g-1} \psi_{2 g} \in H^{6}(X ; Z)
$$

so that $\psi^{2}[X]=2 \sigma$.
Theorem 1. Let A denote the ring $H^{*}(S ; Q) /\langle\beta\rangle$. Then the monomials

$$
\begin{equation*}
\alpha^{s} \psi_{q_{1}} \cdots \psi_{q_{t}} \quad\left(s, t \geq 0,1 \leq q_{1}<q_{2}<\cdots<q_{t} \leq 2 g, s+t<g\right) \tag{1}
\end{equation*}
$$

form a basis for A as a vector space over Q. Moroever, whenever $s+t \geq g$,

$$
\begin{equation*}
\left[\alpha^{s}+f_{s}(\alpha, \sigma)\right] \psi_{q_{1}} \cdots \psi_{q_{t}}=0 \tag{2}
\end{equation*}
$$

[^0]1980 Mathematics Subject Classification. Primary 14D22, 14F05, 14F25; Secondary 55Ri40.

[^0]: Received by the editors September 6, 1983.

