ON THE RELATIONS BETWEEN CHARACTERISTIC CLASSES OF STABLE BUNDLES OF RANK 2 OVER AN ALGEBRAIC CURVE

BY P. E. NEWSTEAD

ABSTRACT. We describe a complete set of generators and relations for a certain quotient of the rational cohomology ring of the moduli space of stable bundles of rank 2 and fixed determinant of odd degree over a nonsingular complex algebraic curve. The formulae for the relations apply in any genus and are relatively simple.

1. Introduction. Let $S = U_L(2,1)$ denote the moduli space of stable bundles of rank 2 and determinant L of degree 1 over a nonsingular complete algebraic curve X of genus $g \ge 2$ defined over the complex numbers. The Betti numbers of S were determined some time ago in [3], and generators for $H^*(S;Q)$ were given in [4]. Recently there has been renewed interest in obtaining a complete description of $H^*(S;Q)$, particularly in connection with the work of M. F. Atiyah and R. Bott [1, §9]. David Mumford and Dave Bayer have performed some calculations on a computer, which provide evidence in support of some conjectures of Mumford. In this note we use the topological methods of [3, 4] to obtain some information about relations in $H^*(S;Q)$; these provide further support for Mumford's conjectures.

2. The main theorem. We recall the generators for $H^*(S;Q)$ given in [4], namely $\alpha \in H^2(S; Z)$; $\psi_1, \ldots, \psi_{2g} \in H^3(S; Z)$; $\beta \in H^4(S; Z)$. A little care is needed over the definition of the ψ_i . We first choose a symplectic basis a_1, \ldots, a_{2q} for $H^1(X; Z)$ (with respect to the skew-symmetric form given by Poincaré duality); then the ψ_i are defined by the equation

$$\psi=\psi_1\otimes a_1+\cdots+\psi_{2g}\otimes a_{2g},$$

where ψ is the component in $H^3(S; Z) \otimes H^1(X; Z)$ of the second Chern class of a universal bundle on $S \times X$. We write

$$\sigma = \psi_1 \psi_2 + \dots + \psi_{2g-1} \psi_{2g} \in H^6(X; Z),$$

so that $\psi^2[X] = 2\sigma$.

THEOREM 1. Let A denote the ring $H^*(S; Q)/\langle \beta \rangle$. Then the monomials

(1)
$$\alpha^{s} \psi_{q_{1}} \cdots \psi_{q_{t}}$$
 $(s, t \ge 0, 1 \le q_{1} < q_{2} < \cdots < q_{t} \le 2g, s+t < g)$

form a basis for A as a vector space over Q. Moreover, whenever $s + t \ge q$,

(2)
$$[\alpha^s + f_s(\alpha, \sigma)]\psi_{q_1}\cdots\psi_{q_t} = 0,$$

Received by the editors September 6, 1983.

1980 Mathematics Subject Classification. Primary 14D22, 14F05, 14F25; Secondary 55R40.

© 1984 American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page