REAL AND COMPLEX CHEBYSHEV APPROXIMATION ON THE UNIT DISK AND INTERVAL

BY MARTIN H. GUTKNECHT AND LLOYD N. TREFETHEN ${ }^{1}$

We announce the resolution of a number of outstanding questions regarding real and complex Chebyshev (supremum norm) approximation by rational functions on a disk and on an interval. The proofs consist mainly of symmetry arguments applied to explicit examples. The most important results: complex rational best approximations on a disk are in general not unique; real functions on an interval can in general be approximated arbitrarily much better by complex rational functions than by real ones. Details will appear in [3, 8].

1. Notation. Define $\Delta=\{z:|z| \leq 1\}, A_{\Delta}=\{f$: continuous on Δ, analytic in the interior $\},\|f\|_{\Delta}=\sup \{|f(z)|: z \in \Delta\}$. Let $m \geq 0, n \geq 1$ be integers (all questions considered below become trivial for $n=0$), and let $R_{m n}$ be the space of complex rational functions of type (m, n). Define $A_{\Delta}^{r}=\left\{f \in A_{\Delta}: f(\bar{z})=\right.$ $\overline{f(z)}\}, R_{m n}^{r}=\left\{r \in R_{m n}: r(\bar{z})=\overline{r(z)}\right\}$, and for $f \in A_{\Delta}$,

$$
E_{m n}(f ; \Delta)=\inf _{r \in R_{m n}}\|f-r\|_{\Delta}, \quad E_{m n}^{r}(f ; \Delta)=\inf _{r \in R_{m n}^{r}}\|f-r\|_{\Delta} .
$$

It is known that these infima are attained (proof by a normal families argument due to Walsh [10]), and we let $N_{m n}(f ; \Delta)$ and $N_{m n}^{r}(f ; \Delta)$ denote the number (finite or infinite) of best approximations ($B A$'s) to f.

Finally, set $I=[-1,1]$, and let $A_{I}, A_{I}^{r},\|\cdot\|_{I}, E_{m n}(f ; I), E_{m n}^{r}(f ; I)$, $N_{m n}(f ; I), N_{m n}^{r}(f ; I)$ be defined analogously. (A_{I} and A_{I}^{r} are just the sets of continuous complex and real functions on I, respectively.)
2. Nonuniqueness. It is a classical result due to Achieser that $N_{m n}^{r}(f ; I)=$ 1 for all m, n and all $f \in A_{I}^{r}$. But Lungu [4] (on proposal of A. A. Gončar) and independently Saff and Varga $[6,7]$ found that for all m and n there exists $f \in$ A_{I}^{r} with $E_{m n}(f ; I)<E_{m n}^{r}(f ; I)$, so that by symmetry necessarily $N_{m n}(f ; I) \geq$ 2. Ruttan [5] even gave an example with $N_{11}(f ; I)=\infty$. However, the analogous questions for the disk have been open [2, 9]. We claim [3]:

Theorem 1. $\forall m, n, \forall K \geq 1, \exists f \in A_{\Delta}$ such that $N_{m n}(f ; \Delta) \geq K$.
THEOREM 2. $\forall m$, n with $m=0$ or $n=1, \exists f \in A_{\Delta}^{r}$ such that $E_{m n}(f ; \Delta)$ $<E_{m n}^{r}(f ; \Delta)$.

ThEOREM 3. $\forall m, n, \exists f \in A_{\Delta}^{r}$ such that $N_{m n}^{r}(f ; \Delta)>1$.

[^0]
[^0]: Received by the editors October 1, 1982.
 1980 Mathematics Subject Classification. Primary 30E10; Secondary 41A20.
 ${ }^{1}$ Supported by a National Science Foundation Mathematical Sciences Postdoctoral Fellowship.

