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A COMPUTER-ASSISTED PROOF
OF THE FEIGENBAUM CONJECTURES

BY OSCAR E. LANFORD I

1. Introduction. Let M denote the space of continuously differentiable
even mappings ¥ of the interval [~1, 1] into itself such that

M1. Y(0) =1,

M2. xy'(x) <0 forx #0.

M2 says that ¢ is strictly increasing on [~ 1, 0) and strictly decreasing on (0, 1],
so M is a space of mappings which are unimodal in a strict sense.

Condition M1 says that the unique critical point O is mapped to 1. We want
to consider Y’s which map 1 slightly — but not too far — to the left of 0. It may
then be possible to find nonoverlapping intervals I, about 0 and 7, near 1 which
are exchanged by ¢. Technically, we proceed as follows: Write a for —y(1) =
—y2(0) and b for Y(a); we suppress from the notation the dependence of @ and b
on Y. Define T(T) to be the set of all Y’s in M such that:

D1. >0,

D2. b >a,

D3. y() <a.

The two intervals /[, = [—a, a] and I, = [b, 1] are then nonoverlapping and ¥
maps I, into I; and vice versa. If Y € (T), then ¢ o Y|y, has a single critical
point, which is a minimum. By making the change of variables x — —ax, we
replace I, by [~1, 1] and the minimum by a maximum, i.e., if we define

To(x) = - 5 Vo Y(-ax) forx € [1, 1]

then Ty is again in M. Thus, T defines a mapping of D(T) into M. (In general,
Ty need not lie in I(T). If @ is small, then Ty(1) will be approximately 1 so
Ty will not satisfy D1. On the other hand, if Y(b) is near a, then TY(1) will be
near —1 from which it follows that Ty does not satisfy D2.)

M. Feigenbaum [6] has proposed an explanation for some universal features
displayed by infinite sequences of period doubling bifurcations based on some
conjectures about T. We will not review has argument here; a version with due
regard for mathematical technicalities may be found in Collet and Eckmann [3],
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