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1. Introduction. The decomposition of tensor fields into canonical forms 
arises as an important step in many problems of mathematics and physics. 
The classical Helmholtz decomposition (divergence free plus gradient) arises 
in fluid mechanics and electromagnetism. The Hodge-Kodaira decomposition 
and its generalizations is an important area of mathematical study. More 
recently various decompositions of 2-tensors have arisen in the study of 
general relativity [6, 16, 30]. There have also been applications in differential 
geometry [4,15,17] and symplectic structures [3]. 

There are, of course, classical methods for the study of some decomposi­
tions. These involve the treatment of a single tensor (or vector) field. This is 
inadequate for most applications. Often one needs to split entire spaces of 
tensor fields. 

The reason for this is that the desired decomposition usually is a lineariza­
tion of a nonlinear problem. Let us give a simple example. 

The configuration space for the dynamics of an incompressible fluid on a 
Riemannian manifold (Af, g) is the space of volume-preserving diffeomor-
phisms ^ on M. (Here /A is the canonical volume form determined by the 
metric g.) For more details see [21]. <§ (M) is properly thought of as a 
constraint space in the set of all diffeomorphisms of M. The Euler or 
Naviar- Stokes equations yield vector fields on D̂ . Thus a natural question 
is whether D̂ is a submanifold. The principal tool for studying such a 
question is the implicit function theorem for Banach spaces. 
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