FIXED POINTS OF SURFACE HOMEOMORPHISMS

BY BOJU JIANG (PO-CHU CHIANG)

For a self-map f of a compact connected polyhedron X, the Nielsen number N(f) is defined to be the number of essential fixed point classes (see [1] for an introduction to Nielsen fixed point theory). It is a classical theorem of Wecken [7] that N(f) is a lower bound of the number of fixed points for all maps homotopic to f, and that if X is a manifold of dimension ≥ 3 this lower bound is always realizable (see also [1]). It is now known [3] that N(f) is realizable if X has no local cut points and X is not a surface. The realizability problem for maps on surfaces is still open.

Historically, the theory of fixed point classes originated with Nielsen's study [5] of surface homeomorphisms. The purpose of this work is to examine the realizability of the Nielsen number of a surface homeomorphism as the least number of fixed points in an isotopy class. The same problem for higher-dimensional manifolds is open.

MAIN THEOREM. Let M^2 be a compact surface, closed or with boundary. Let $\varphi \colon M^2 \to M^2$ be a homeomorphism. Then φ is isotopic (through embeddings) to an embedding which has $N(\varphi)$ fixed points. If, in addition, no boundary component of M^2 is mapped onto itself by φ in an orientation-reversing manner, then φ is isotopic (through homeomorphisms) to a homeomorphism having $N(\varphi)$ fixed points.

The reason why we have to be contented with embeddings instead of homeomorphisms in the presence of an orientation-reversed invariant boundary component has already been explained in [4].

Our proof is based on Thurston's theory of surfaces [6, 2] which enables us to visualize a representative from each isotopy class.

For surfaces with $\chi(M^2) \ge 0$, the truth of the Theorem can be checked case by case. In the general case $\chi(M^2) < 0$, Thurston [6] (see also [2]) tells us that every diffeomorphism φ is isotopic to a "diffeomorphism" φ' which is either (1) an isometry with respect to a hyperbolic metric, or (2) a pseudo-Anosov "diffeomorphism", or (3) reducible in the sense that M^2 can be cut into simpler parts along an invariant set of disjoint simple closed curves, such that on each part, φ' is of type (1) or (2) in the complement of a collar around its boundary.

Received by the editors April 2, 1981.

1980 Mathematics Subject Classification. Primary 55M20.