A UNIVERSAL DIFFERENTIAL EQUATION

BY LEE A. RUBEL¹

Dedicated to the Memory of Walter Strodt

THEOREM. There exists a nontrivial fourth-order algebraic differential equation

*

$$P(y', y'', y''', y''') = 0,$$

where P is a polynomial in four variables, with integer coefficients, such that for any continuous function φ on $(-\infty, \infty)$ and for any positive continuous function $\epsilon(t)$ on $(-\infty, \infty)$, there exists a C^{∞} solution y of * such that

 $|y(t) - \varphi(t)| < \epsilon(t)$ for all $t \in (-\infty, \infty)$.

One such specific equation (homogeneous of degree seven, with seven terms of weight 14) is

$$3y'^{4}y''y'''^{2} - 4y'^{4}y'''^{2}y''' + 6y'^{3}y''^{2}y'''y''' + 24y'^{2}y''^{4}y''' - 12y'^{3}y''y''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0.$$

REMARK 1. From the proof, it will be clear that we can in addition ensure that $y(t_j) = \varphi(t_j)$ for any sequence (t_j) of distinct real numbers such that $|t_i| \to \infty$ as $j \to \infty$.

REMARK 2. We may moreover make y monotone if φ is monotone.

REMARK 3. Without changing the equation *, if φ and ϵ are only defined on an open interval *I*, then we can make $|y(t) - \varphi(t)| < \epsilon(t)$ for all $t \in I$, where y is a C^{∞} solution of * on *I*.

If we regard the uniform limits of solutions of * as "weak solutions" (the way y = |t| is a weak solution of yy' - t = 0 as the limit of $(t^2 + \epsilon^2)^{\frac{1}{2}}$ as $\epsilon \to 0$), then a corollary of our Theorem is that every continuous function φ is a weak solution of *.

This Theorem may be regarded as an analogue, for analog computers, of the Universal Turing Machine (see [R, p. 23]), because of a theorem of Shannon (see [S, Theorem II]) that identifies the outputs of analog computers with the solutions of algebraic differential equations. A later paper of Pour-El requires some

© 1981 American Mathematical Society 0002-9904/81/0000-0209/\$02.25

Received by the editors January 16, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 34A34.

¹This research was partially supported by a grant from the National Science Foundation.