A UNIVERSAL DIFFERENTIAL EQUATION

BY LEE A. RUBEL ${ }^{1}$

Dedicated to the Memory of Walter Strodt
Theorem. There exists a nontrivial fourth-order algebraic differential equation

```
* P(\mp@subsup{y}{}{\prime},\mp@subsup{y}{}{\prime\prime},\mp@subsup{y}{}{\prime\prime},\mp@subsup{y}{}{\prime\prime\prime})=0,
```

where P is a polynomial in four variables, with integer coefficients, such that for any continuous function φ on $(-\infty, \infty)$ and for any positive continuous function $\epsilon(t)$ on $(-\infty, \infty)$, there exists a C^{∞} solution y of $*$ such that

$$
|y(t)-\varphi(t)|<\epsilon(t) \quad \text { for all } t \in(-\infty, \infty)
$$

One such specific equation (homogeneous of degree seven, with seven terms of weight 14) is

$$
\begin{aligned}
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime 2} & -4 y^{\prime 4} y^{\prime \prime \prime 2} y^{\prime \prime \prime}+6 y^{3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime} \\
& +24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime}-12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime 3}-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime 2}+12 y^{\prime \prime 7}=0 .
\end{aligned}
$$

Remark 1. From the proof, it will be clear that we can in addition ensure that $y\left(t_{j}\right)=\varphi\left(t_{j}\right)$ for any sequence $\left(t_{j}\right)$ of distinct real numbers such that $\left|t_{j}\right| \longrightarrow \infty$ as $j \rightarrow \infty$.

Remark 2. We may moreover make y monotone if φ is monotone.
Remark 3. Without changing the equation $*$, if φ and ϵ are only defined on an open interval I, then we can make $|y(t)-\varphi(t)|<\epsilon(t)$ for all $t \in I$, where y is a C^{∞} solution of $*$ on I.

If we regard the uniform limits of solutions of $*$ as "weak solutions" (the way $y=|t|$ is a weak solution of $y y^{\prime}-t=0$ as the limit of $\left(t^{2}+\epsilon^{2}\right)^{1 / 2}$ as $\epsilon \longrightarrow 0$), then a corollary of our Theorem is that every continuous function φ is a weak solution of $*$.

This Theorem may be regarded as an analogue, for analog computers, of the Universal Turing Machine (see [R, p. 23]), because of a theorem of Shannon (see [S, Theorem II]) that identifies the outputs of analog computers with the solutions of algebraic differential equations. A later paper of Pour-El requires some

[^0]
[^0]: Received by the editors January 16, 1981.
 1980 Mathematics Subject Classification. Primary 34A34.
 ${ }^{1}$ This research was partially supported by a grant from the National Science Foundation.

