OPEN ACYCLIC 3-MANIFOLDS, A LOOP THEOREM AND THE POINCARÉ CONJECTURE¹

BY T. L. THICKSTUN

In [3] the 3-dimensional Poincaré conjecture (hereafter denoted P. C.) was reduced to certain questions about open, irreducible, acyclic 3-manifolds. That reduction is strengthened here.

THEOREM 1. P. C. iff every open, irreducible, acyclic 3-manifold, which is the degree one proper image of an open 3-manifold embeddable in S^3 , is also embeddable in S^3 .

DEFINITIONS. A 3-manifold, U^3 , is *irreducible* iff every 2-sphere, P.L. embedded in U^3 , bounds a 3-ball in U^3 . A map is *proper* iff the preimage of any compactum is a compactum.

Let $f: V^3 \to U^3$ be a proper map of open, orientable 3-manifolds (not necessarily connected) and M^3 a compact 3-submanifold of V^3 such that f is transverse to M^3 . Denote $N^3 = f^{-1}(M^3)$. Then $f|_{N^3}: (N^3, \partial N^3) \to (M^3, \partial M^3)$. Furthermore if U^3 and V^3 are oriented their orientations induce orientations on M^3 and N^3 . Corresponding to these orientations we have elements $\alpha_M \in$ $H_3(M^3, \partial M^3)$ and $\beta_N \in H_3(N^3, \partial N^3)$. f is degree one iff there exist orientations of U^3 and V^3 such that for every such M and N as above $f_*(\beta_N) = \alpha_M$. Given such an f we say U^3 is a proper degree one image of V^3 . A space is acyclic iff its first homology group with Z coefficients is trivial. A noncompact 3-manifold, P^3 , is acyclic at ∞ iff given any compact subset, X, of P^3 there exists a compact subset, Y, of P^3 such that $X \subset Y$ and $i_*: H_1(P^3 - Y) \to H_1(P^3 - X)$ is trivial (where $i: P^3 - Y \to P^3 - X$ is inclusion).

Note. Acyclic implies acyclic at ∞.

A virtual disk is a space homeomorphic to $D^2 - X$ where X is a (generally nonpolyhedral) compact subspace of D^2 (where D^2 is the 2-disk). A proper map $f: D \to U^3$, of a virtual disk D, is a virtual disk in U^3 (referred to as a virtual disk if the range is already specified). If f is an embedding then it is an embedded virtual disk.

NOTATION. Given $\alpha: S^1 \to X$, $[\alpha]$ will denote the conjugacy class of $\pi_1(X)$ determined by α .

© 1981 American Mathematical Society 0002-9904/81/0000-0106/\$01.75

Received by the editors August 11, 1980.

AMS (MOS) subject classifications (1970). Primary 55A40; Secondary 57A40.

¹ This research was supported by SRC grant GR/A/5561.5.