$S K_{1}$ OF p-ADIC GROUP RINGS

by robert oliver
If A is a Dedekind domain with quotient field K, and π a finite group, define

$$
S K_{1}(A \pi)=\operatorname{Ker}\left[K_{1}(A \pi) \rightarrow K_{1}(K \pi)\right]
$$

We concentrate here on the case when A is a p-ring-the ring of integers in a finite extension of the p-adic rationals $\hat{\mathbf{Q}}_{\boldsymbol{p}}$-and report on results which completely calculate $S K_{1}(A \pi)$ in this case.

The main reason for looking at $S K_{1}(A \pi)$ involves $S K_{1}(\mathrm{Z} \pi)$, shown by Wall [5] to be the torsion subgroup of the Whitehead group $\mathrm{Wh}(\pi)$ (and thus having various topological applications). The inclusions $\mathbf{Z} \pi \subseteq \hat{\mathbf{Z}}_{p}[\pi]$ induce a surjection

$$
S K_{1}(\mathbf{Z} \pi) \longrightarrow \sum_{p} S K_{1}\left(\hat{\mathbf{Z}}_{p}[\pi]\right)
$$

(see $\S 1$ in [3]), whose kernel is denoted $\mathrm{Cl}_{1}(\mathrm{Z} \pi)$. The computation of $S K_{1}(\mathrm{Z} \pi)$ thus splits into two parts. $\mathrm{Cl}_{1}(\mathbf{Z} \pi)$ can be calculated in many cases (see, e.g., [4] and [3], noting that $\mathrm{Cl}_{1}(\mathrm{Z} \pi)=S K_{1}(\mathrm{Z} \pi)$ for abelian $\left.\pi\right)$; but no general formula or algorithm has yet been found. The groups $S K_{1}\left(\hat{\mathbf{Z}}_{p}[\pi]\right)$, on the other hand, are completely described by Theorems 1 and 2 below.

For any finite π, define

$$
H_{2}^{a b}(\pi)=\operatorname{Im}\left[\sum\left\{H_{2}(\rho): \rho \subseteq \pi, \rho \text { abelian }\right\} \longrightarrow H_{2}(\pi)\right]
$$

If π is a p-group, the situation is particularly simple.
Theorem 1. For any p-ring A and p-group π,

$$
S K_{1}(A \pi) \cong H_{2}(\pi) / H_{2}^{a b}(\pi)
$$

Note in particular that $S K_{1}(A \pi)$ is independent of A in this case. If $B \supseteq A$ is a totally ramified extension of p-rings, the inclusion $A \pi \subseteq B \pi$ induces an isomorphism from $S K_{1}(A \pi)$ to $S K_{1}(B \pi)$. If, on the other hand, $B \supseteq A$ is an unramified extension, it is the transfer map

$$
t r f: S K_{1}(B \pi) \longrightarrow S K_{1}(A \pi)
$$

which is an isomorphism.
For arbitrary finite π, the formula is much messier. For any p-ring A and finite group π, set $n=\exp (\pi)$ and regard $\operatorname{Gal}\left(A \zeta_{n} / A\right)\left(\zeta_{n}\right.$ a primitive nth root of

Received by the editors April 7, 1980.

1980 Mathematics Subject Classification. Primary 18F25; Secondary 16A26.

