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A Gaussian law (= probability measure) P on a finite-dimensional vector 
space V is of the form dP{x) = exp(-g(x)) dxJy where g is a quadratic 
polynomial and dxj is Lebesgue measure on a linear variety (affine subspace) 
/ . Such laws, also called normal, are staples of multivariate statistics ([1], [34], 
[43]), along with their relatives such as Wishart distributions. 

Let EX = fX dP, the mean of the (vector or scalar) X. In the rest of this 
review Gaussian laws will all have mean 0 unless otherwise stated. If A, B, C 
and D are any four linear forms on V, then EÇ4BCD) = E(AB)E{CD) + 
E(AC)E(BD) + E(AD)E(BC). So, E(A4) « 3E(A2)2, the first of a sequence 
of identities which characterize Gaussian laws on R1. 

Given a probability space (£2, ®, Pr) and any set T7, a Gaussian process is 
any real function X on T X £2 such that for each finite set F c T, 
{x(t> ')}teF h a s a Gaussian law on RF. Let X(t) s= X(t, •)• 

If T is a Hilbert space H, the isonormal Gaussian process L maps H 
isometrically into an L2(Q, Pr), with EL(x, -)L(y, •) = (x,y), the inner pro
duct; this fixes the laws of L. For any Gaussian process X, there is a F with 
the same laws and Y(t, co) = L(g(t% (o), where g maps T into some Hilbert 
space H. So L is the Gaussian process [13]; it clothes a pristine Hilbert space 
in full Gaussian attire. 

Trajectories. Probabilists like to pick an <o and follow the wandering path, 
or sample function, t -» X(t, <o) ([3], [13], [20], [48]). The speed at which 
exp(- x2/2) goes to 0 as x -* oo lets us make (almost) all paths continuous if 
g(T) in H is compact enough. If T = R, the process X is called stationary if 
all its laws are preserved by translations t->t + h. For a stationary X 


