A CHARACTERIZATION OF HEREDITARY RINGS OF FINITE REPRESENTATION TYPE

BY PIOTR DOWBOR AND DANIEL SIMSON

In this note we announce a characterization of hereditary rings R of finite representation type in terms of a sequence of partial Coxeter functors associated to R.

The methods we use are theory of almost split sequences [1], partial Coxeter functors [2], [3], [5], representations of species [7], and some ideas of Ringel [8, §6].

We recall from [7] that a species $M = (F_i, {}_iM_j)_{i,j \in I}$ is a finite set of division rings F_i and $F_i - F_j$ bimodules ${}_iM_j$. Throughout we will suppose M is a species such that ${}_iM_j \neq 0$ implies ${}_jM_i = 0$ for $i \neq j$. M is called *finite dimensional* if the dimensions

$$d_{ij} = \dim({}_iM_j)_{F_j}, \quad d_{ji} = \dim_{F_i}({}_iM_j)$$

are finite for $i \neq j$. We denote by r(M) the category of all finite dimensional right representations of M (see [6], [8]). From M we derive an *oriented valued* graph (Γ , d, Ω) (not necessarily symmetrizable) with valued edges

$$: \xrightarrow{(d_{ij}, d_{ji})}_{i \quad j} :$$

precisely when ${}_{i}M_{j} \neq 0$. Given source (resp. sink) k in (Γ , d, Ω) we define a species $M^{k} = (F_{i}, {}_{i}N_{j})_{i,i \in I}$ by taking

$$_{i}N_{j} = \begin{cases} {}_{k}M_{i}^{i} = \operatorname{Hom}_{F_{i}}(_{k}M_{i}, F_{i}) & \text{for } j = k \quad (\operatorname{resp.} = {}_{j}M_{k}^{j} \text{ for } i = k) \\ {}_{i}M_{j} & \text{for } j \neq k \quad (\operatorname{resp. for } i \neq k). \end{cases}$$

If M is a finite dimensional species and k is a sink in $(\Gamma, \mathbf{d}, \Omega)$ we can define a pair of *Coxeter functors*

$$\mathfrak{n}(\mathbb{M}) \xrightarrow{S_k^+} \mathfrak{n}(\mathbb{M}^k)$$

having following properties:

 (c_1^+) S_k^- is left adjoint to S_k^+ .

 (c_2^+) Suppose $\mathbf{X} = (X_i, {}_j\varphi_i)$ is indecomposable in r(M). Then

(i) $S_k^+ X = 0$ if and only if $X \cong F_k$, where F_k has F_k on kth coordinate and zeros otherwise,

Received by the editors June 11, 1979.

AMS (MOS) subject classifications (1970). Primary 16A64; Secondary 16A46. Key words and phrases. Species, Coyeter functors, ring of finite representation type. © 1980 American Mathematical Society 0002-9904/80/0000-0102/\$01.75