Differential forms in mathematical physics, by C. von Westenholz, Studies in
Mathematics and its Applications 3, North-Holland Publishing Company, Amsterdam, 1978, xv +487 pp., \$62.25.

An example or two will give the flavor of the subject. First, let M be an n-dimensional smooth differentiable manifold, thought of as the configuration space of a mechanical system with n degrees of freedom. Each point of M has a neighborhood with a local coordinate system (q^{1}, \ldots, q^{n}). When the system is in motion we need not only the coordinates q^{i} of a point of M, but also the momentum vector $\left(p_{1}, \ldots, p_{n}\right)$ at q. Thus we are lead to the phase space, or cotangent bundle, of M, denoted $T^{*} M$. This space already has an interesting structure: the differential form of degree one with local expression

$$
\omega=\sum p_{i} d q^{i}
$$

is really a global quantity on $T^{*} M$. Its exterior derivative

$$
\Omega=d \omega=\sum d p_{i} \wedge d q^{i}
$$

is automatically a global quantity on $T^{*} M$, an exterior differential form of degree two (skew-symmetric covariant 2-tensor). The equations of motion of the system are described in the following way by a real function H on M, called the Hamiltonian of the motion:

There is a contraction process, called the interior product, that contracts Ω with any vector field X on $T^{*} M$ to produce a differential form of degree one (one-form for short) $X\lrcorner \Omega$. If Ω is thought of as an alternating bilinear functional on vector fields, then

$$
(X\lrcorner \Omega)(Y)=\Omega(X, Y)
$$

exhibits $X\lrcorner \Omega$ as a linear functional on vector fields, that is, a one-form. It turns out that $X \rightarrow X\lrcorner \Omega$ is an isomorphism on the space of vector fields onto the space of one-forms, so there is a unique vector field X_{H} such that

$$
\left.X_{H}\right\lrcorner \Omega=d H
$$

A short calculation in the local coordinate system q^{i}, p_{i} yields

$$
X_{H}=\sum \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}}-\frac{\partial H}{\partial q^{i}} \frac{\partial}{\partial p_{i}} .
$$

(A vector field here is thought of as a directional derivation on the space of real functions.) Therefore, in local coordinates, a curve $q^{i}=q^{i}(t), p_{i}=p_{i}(t)$ is a trajectory of X_{H}, provided that

$$
\frac{d q^{i}}{d t}=\frac{\partial H}{\partial p_{i}}, \quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q^{i}} .
$$

These are precisely Hamilton's equations of motion of the system.
From this example we see that a lot of the structure of differential geometry: manifolds, bundles over manifolds, induced structures, vector

