THE DUALITY OPERATION IN THE CHARACTER RING OF A FINITE CHEVALLEY GROUP

BY DEAN ALVIS

It is possible (as in [4]) to define a duality operation $\zeta \rightarrow \zeta^*$ in the ring of virtual characters of an arbitrary finite group with a split (*B*, *N*)-pair of characteristic *p*. Such a group arises as the fixed points under a Frobenius map of a connected reductive algebraic group, defined over a finite field [1]. This paper contains statements of several general properties of the duality map $\zeta \rightarrow \zeta^*$ and two related operations (see §§2 and 4). The duality map $\zeta \rightarrow \zeta^*$ generalizes the construction in [2] of the Steinberg character, and interacts well with the organization of the characters from the point of view of cuspidal characters (§6). It is hoped that there is also a useful interaction with the Deligne-Lusztig virtual characters $R_T^G \theta$. Partial results have been obtained in this direction (§5). Detailed proofs will appear elsewhere.

1. Let G be a finite group with split (B, N)-pair of characteristic p. Let (W, R) be the Coxeter system, and let $P_J = L_J V_J$ be the standard parabolic subgroup corresponding to $J \subseteq R$, with $V_J = O_P(P_J)$ (see [3] for definitions and notations). Let char(G) denote the ring of virtual characters of G, and Irr(G)the set of irreducible characters of G, all taken in the complex field. For $J \subseteq R$ and $\zeta \in char(G)$ define

-

(1.1)
$$\zeta_{(P_J/V_J)} = \Sigma(\zeta, \widetilde{\lambda}^G)_{\mathbf{G}} \lambda$$

where ~ denotes extension to P_J via the projection $P_J \rightarrow L_J \cong P_J/V_J$, and the sum is over all $\lambda \in \operatorname{Irr}(L_J)$. Let $\zeta_{(P_J)} = \zeta_{(P_J/V_J)}$. The duality map is then defined by:

1.2 DEFINITION. $\zeta^* = \sum_{J \subseteq R} (-1)^{|J|} \zeta_{(P_J)}^G$, for all $\zeta \in char(G)$.

2. The truncation map $\zeta \to \zeta_{(P_J/V_J)}$ and the map $\lambda \to \tilde{\lambda}^G$ behave in much the same way as ordinary restriction and induction. The following basic properties follow directly from the structure theorems [3].

2.1 FROBENIUS RECIPROCITY. Let $\zeta \in char(G)$ and $\lambda \in char(L_I)$. Then

© 1979 American Mathematical Society 0002-9904/79/0000-0504/\$02.25

Received by the editors May 7, 1979.

AMS (MOS) subject classification numbers (1970). Primary 20C15.