DIVISION ALGEBRAS OF DEGREE 4 AND 8 WITH INVOLUTION

BY S. A. AMITSUR, L. H. ROWEN ${ }^{1}$, AND J. P. TIGNOL ${ }^{2}$

Abstract

Examples are given of division algebras with involution (*) of the first kind, one of degree 8 which is not a tensor product of quaternion subalgebras, the other of degree 4 which is not a tensor product of (*)-invariant quaternion subalgebras.

Suppose D is a division algebra with center F, and $[D: F]<\infty$. Then $[D: F]$ $=n^{2}$ for suitable $n ; n$ is the degree of D, and D is a quaternion F-algebra when $\operatorname{deg}(D)=2$. We further assume D has characteristic $\neq 2$, and has an involution (*) of the first kind, i.e. (*) is an anti-automorphism of degree 2 which fixes F. This situation is treated in depth in [1, Chapter 10], and it arises if and only if D has exponent 2 in the Brauer group, i.e. $D \otimes D^{\circ p} \approx M_{n^{2}}(F)$, the algebra of $n^{2} \times n^{2}$ matrices over F. Thus, in this case, the degree of D is a power of 2 . Until now, the only known such algebras were tensor products of quaternion F-subalgebras.

Question 1. Is D necessarily a tensor product of quaternion F-subalgebras?
Question 2. Is D necessarily a tensor product of (*)-invariant quaternion F-subalgebras?

Question 1 dates back about 60 years; Albert [1] showed it is true when $\operatorname{deg}(D) \leqslant 4$. The main object of this paper is to give a counterexample for degree 8. Also, we shall give a counterexample to Question 2 for degree 4, which is clearly sharp. (Incidentally, for symplectic involutions, question 2 has no counterexample of degree 4 , cf. [3, Theorem B].) Our counterexample makes the following result of Tignol [4] sharp: If $\operatorname{deg}(D)=8$ then $M_{2}(D)$ is a tensor product of quaternion subalgebras. A more detailed description of our methods will appear in the Israel Journal of Mathematics.

The main idea is to use the generic abelian crossed products of [2], modified slightly to account for the presence of an involution. Suppose R is an abelian crossed product, i.e. D has a maximal subfield K Galois over F, having Galois group $G=\left\langle\sigma_{1}\right\rangle \oplus \cdots \oplus\left\langle\sigma_{q}\right\rangle$, a direct sum of cyclic groups, and for our purposes we assume that σ_{i} has order 2. Then, choosing z_{i} such that $\sigma_{i}(x)=$ $z_{i} x z_{i}^{-1}$ for all x in K, we define $u_{i j}=z_{i} z_{j} z_{i}^{-1} z_{j}^{-1}$ and $b_{i}=z_{i}^{2}$, elements of K. [2, Lemma 1.2] gives the following conditions for all i (where $N_{i}(x)=x \sigma_{i}(x)$ by definition).

[^0]
[^0]: Received by the editors November 16, 1978.
 AMS (MOS) subject classifications (1970). Primary 16A40, 16A28; Secondary 15A66.
 ${ }^{1}$ Research of the second author is supported by the Anshel Pfeffer Chair.
 ${ }^{2}$ The third author is grateful to Professor J. Tits for enlightening conversations.

