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Introduction. G. E. Sacks has remarked that recursion theory is the heart of 

logic, and recursively enumerable sets form the soul of recursion theory. 
Although some might challenge these claims, it is clear that recursively 
enumerable sets have played an important role in logic beginning with the 
first undecidability results of Gödel [Göl], Church [Ch] and Rosser [Rs]. 
Furthermore, the notion of a recursively enumerable set rather than that of a 
recursive (i.e, computable) function has proved to be the fundamental 
concept in attempts to generalize classical recursion theory to more general 
settings, such as admissible ordinals [Sh4], [Le6], or higher types [Sa9]. 

A subset A of <o (the set of nonnegative integers) is recursive (also called 
decidable or computable) if there is an algorithm for determining whether a 
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