# AN ALGEBRAIC APPROACH TO THE TOPOLOGICAL DEGREE OF A SMOOTH MAP 

BY DAVID EISENBUD ${ }^{1}$

The singularities of mappings have attracted a lot of attention lately, perhaps partly because the field touches so many others. However, many elementary problems still remain. I was attracted to the subject myself by a problem shown me by Harold Levine, which I would like to describe. Levine and I worked on this problem together, and the new results that I will discuss come from our joint work, mostly contained in [Eisenbud-Levine].

Topological degree. The problem concerns the computation of the degree of a continuous map

$$
f: M \rightarrow N
$$

between two oriented compact manifolds $M$ and $N$ of the same dimension $n$, written $\operatorname{deg} f$. One way to think of the degree of $f$ is as the number of $f$-preimages of a point in the target manifold $N$. For example, if $f$ is the map given below by "radial projection" from the outer circle to the inner one,

(the arrow heads on $M$ and $N$ represent the orientations)
then every point has two preimages, so the degree of the map is 2 .
Of course, care must be taken with maps like the one in the following picture, where again $f$ is given by "radial projection" from the outer circle to the inner:

[^0]
[^0]:    An Invited Address given at the 83rd Annual Meeting of the American Mathematical Society on January 30, 1977 at St. Louis, Missouri; received by the editors August 12, 1977.

    AMS (MOS) subject classifications (1970). Primary 55C25, 14B99; Secondary 10C05, 13B15, 26A93.
    ${ }^{1}$ The author is grateful for the partial support of the NSF during the preparation of this report.

