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British mathematical books have wretched indices. This one maintains the 
tradition. 
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In recent years the techniques and theorems of Brownian motion have been 
used to prove theorems about harmonic and analytic functions. It is always 
pleasant when two branches of mathematics which ostensibly have little to do 
with one another can help each other out. There are two main links which 
allow Brownian motion (roughly representing the paths of an idealized 
random traveller) to be connected to the theory of harmonic and analytic 
functions. Kakutani [4] showed that Brownian motion can be used to solve 
the Dirichlet problem. Dispensing with the technicalities of continuity, 
smoothness, and measurability, here is what Kakutani's theorem says: Let 5 
be an open set in Rn and let « be a real-valued function defined on 35. Let 
z E 5 and consider a typical Brownian path yz starting at z. Let s(y2) denote 
the point of 35 at which y2 first hits 35. Define u(z) to be the average value of 
u(s(yz))> where the average is taken over all Brownian paths y2. Then û is a 
harmonic function on 5 with boundary values u. 

A theorem of Levy [5] links Brownian motion to analytic functions defined 
in the plane. This thoerem states that a nonconstant analytic function 
composed with Brownian motion is also Brownian motion, although the time 
scale must be changed on each Brownian path. The inituition behind Levy's 
result is that an analytic function preserves angles, so that the randomness of 
direction is preserved. Since an analytic function need not preserve lengths, 
an adjustment of the time scale is necessary. 

For 0 < p < oo and u a function defined on the open unit disk D of the 
complex plane, define 


