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TRANSFORMATIONS THAT DO NOT ACCEPT
A FINITE INVARIANT MEASURE'

BY ARSHAG HAJIAN AND YUII ITO

In the following we shall consider only nonatomic, o-finite measure spaces
(X, B, m). We say that a measure p is equivalent to m if u and m have the
same sets of measure zero. We shall discuss measurable transformations T
that are 1-1 onto maps with measurable inverses. If m(TA) = m(4) for all
sets A € B we say that T is a measure preserving transformation, or that m
is an invariant measure for the transformation 7. We assume that all
transformations mentioned are nonsingular; in other words, the image of a
set of positive measure has positive measure also. A measurable transforma-
tion T is ergodic if 74 = A implies that either the set 4 or its complement
has measure zero. We shall often tacitly assume the phrase “almost every-
where”, and all sets considered shall be measurable.

In [13] E. Hopf first discussed a necessary and sufficient condition for the
existence of a finite invariant measure p equivalent to m. Since then many
authors have discussed different aspects of transformations without a finite
invariant measure and have obtained a number of interesting results that
have deep connections with other areas of mathematics. For instance, there is
a significant influence on the classification theory of the factors of a von
Neumann algebra.

In [10] weakly wandering sets for a transformation T were introduced, and
it was shown that there exists a finite measure p equivalent to m and invariant
for T if and only if there are no weakly wandering sets of positive measure for
the transformation 7. Let U = {n|i=0, 1, 2,...} be a sequence of
integers; we say that a set A is a weakly wandering set under the sequence U
for the transformation T if the sets 7%4 for i =0, 1, 2,... are mutually
disjoint. If the weakly wandering set 4 has positive measure then we say that
U is a weakly wandering sequence for the transformation 7. In case the
sequence U consists of the set of all integers then we have the familiar case
where 4 is a wandering set.

Recurrent transformations play an important role in ergodic theory; these
are the transformations which do not accept wandering sets of positive
measure. Strongly recurrent transformations were introduced and discussed
in [3]; these are the transformations which do not accept weakly wandering
sets of positive measure. An ergodic measure preserving transformation 7' is
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