ON THE LATTICE OF FACES OF THE *n*-CUBE¹

BY N. METROPOLIS AND GIAN-CARLO ROTA Communicated by J. R. Goldman, August 8, 1977

1. We give a simple axiom system for the lattice L_n of faces of the *n*-cube, which is independent of dimension, and we construct a partition of the lattice into a minimum number of chains, or *Dilworth partition*. This partition turns out to enjoy some notable symmetries.

We use the representation of the faces of an *n*-cube as signed subsets of an *n*-set, say of the set $\{1, 2, \ldots, n\}$. A signed subset $A_{\sigma} = (A_1, A_2)$ is an ordered pair of disjoint subsets, where A_1 is called the *positive part*, and A_2 the *negative-part*. If B_{σ} is also a signed set, write $A_{\sigma} \leq B_{\sigma}$ when $A_1 \supseteq B_1$ and $A_2 \supseteq B_2$. Add a minimum element 0-the *improper face*-to the ordered set of signed sets, thereby making it a lattice L_n . The maximum element I of L_n is the signed set $I = (\phi, \phi)$. We use the terms "face" and "signed set" interchangeably.

On the lattice of signed subsets one defines diagonals $\Delta(A_{\sigma}, \cdot)$. For a given face A_{σ} , such a diagonal is a function defined on the segment $[0, A_{\sigma}]$ of L_n , and $\Delta(A_{\sigma}, B_{\sigma}) = C_{\sigma}$, where $C_1 = (A_1, B_2)$ and $C_2 = (A_2, B_1)$. On the improper face one sets $\Delta(A_{\sigma}, 0) = 0$. Geometrically, the diagonal $\Delta(A_{\sigma}, \cdot)$ associates to each face contained in A_{σ} the unique opposite face inside the face A_{σ} . When $A_{\sigma} = I$, the diagonal $\Delta(I, \cdot)$, written $\Delta(\cdot)$, is a cubical analog of complementation in a Boolean algebra.

2. Main Theorem. Let L be a finite lattice with minimum 0 and maximum I. For every $x \neq 0$, let Δ_x be a function defined on the segment [0, x] and taking values in [0, x]. Assume: (1) if $y \leq x$, then $\Delta_x(\Delta_x(y)) = y$; (2) if $a \leq b \leq x$, then $\Delta_x(a) \leq \Delta_x(b)$; (3) if a < x, then $a \land \Delta_x(a) = 0$; (4) let a < x and b < x. Then the following two conditions are equivalent: $\Delta_x(a) \land b < x$ and $a \land b = 0$. Then L is isomorphic to the lattice of faces of an *n*-cube for some *n*, and conversely.

3. A symmetric Dilworth partition. By Dilworth's theorem there exists a partition of L_n into [n/3] chains. We explicitly describe one such partition, one that is invariant under the main diagonal Δ .

Consider a signed subset as a sequence $u_1u_2 \cdots u_n$ whose *digits* u_i range over the alphabet $\{x, 0, 1\}$. Set $u_i = x$ if the element *i* is unsigned; otherwise,

Copyright © 1978, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 05 B40; Secondary 05 A17.

¹ Work supported by US Energy Research and Development Administration under Contract W-7405-ENG. 36 and partially supported by NSF MCS 7701947.