ON THE LATTICE OF FACES OF THE n-CUBE ${ }^{1}$

BY N. METROPOLIS AND GIAN-CARLO ROTA

Communicated by J. R. Goldman, August 8, 1977

1. We give a simple axiom system for the lattice L_{n} of faces of the n-cube, which is independent of dimension, and we construct a partition of the lattice into a minimum number of chains, or Dilworth partition. This partition turns out to enjoy some notable symmetries.

We use the representation of the faces of an n-cube as signed subsets of an n-set, say of the set $\{1,2, \ldots, n\}$. A signed subset $A_{\sigma}=\left(A_{1}, A_{2}\right)$ is an ordered pair of disjoint subsets, where A_{1} is called the positive part, and A_{2} the negative-part. If B_{σ} is also a signed set, write $A_{\sigma} \leqslant B_{\sigma}$ when $A_{1} \supseteq B_{1}$ and A_{2} $\supseteq B_{2}$. Add a minimum element 0 -the improper face-to the ordered set of signed sets, thereby making it a lattice L_{n}. The maximum element I of L_{n} is the signed set $I=(\phi, \phi)$. We use the terms "face" and "signed set" interchangeably.

On the lattice of signed subsets one defines diagonals $\Delta\left(A_{\sigma}, \cdot\right)$. For a given face A_{σ}, such a diagonal is a function defined on the segment $\left[0, A_{\sigma}\right]$ of L_{n}, and $\Delta\left(A_{\sigma}, B_{\sigma}\right)=C_{\sigma}$, where $C_{1}=\left(A_{1}, B_{2}\right)$ and $C_{2}=\left(A_{2}, B_{1}\right)$. On the improper face one sets $\Delta\left(A_{\sigma}, 0\right)=0$. Geometrically, the diagonal $\Delta\left(A_{\sigma}, \cdot\right)$ associates to each face contained in A_{σ} the unique opposite face inside the face A_{σ}. When $A_{\sigma}=I$, the diagonal $\Delta(I, \cdot)$, written $\Delta(\cdot)$, is a cubical analog of complementation in a Boolean algebra.
2. Main Theorem. Let L be a finite lattice with minimum 0 and maximum I. For every $x \neq 0$, let Δ_{x} be a function defined on the segment $[0, x]$ and taking values in $[0, x]$. Assume: (1) if $y \leqslant x$, then $\Delta_{x}\left(\Delta_{x}(y)\right)=y$; (2) if $a \leqslant b$ $\leqslant x$, then $\Delta_{x}(a) \leqslant \Delta_{x}(b)$; (3) if $a<x$, then $a \wedge \Delta_{x}(a)=0$; (4) let $a<x$ and $b<x$. Then the following two conditions are equivalent: $\Delta_{x}(a) \wedge b<x$ and $a \wedge b=0$. Then L is isomorphic to the lattice of faces of an n-cube for some n, and conversely.
3. A symmetric Dilworth partition. By Dilworth's theorem there exists a partition of L_{n} into [$n / 3$] chains. We explicitly describe one such partition, one that is invariant under the main diagonal Δ.

Consider a signed subset as a sequence $u_{1} u_{2} \cdots u_{n}$ whose digits u_{i} range over the alphabet $\{x, 0,1\}$. Set $u_{i}=x$ if the element i is unsigned; otherwise,

[^0]Copyright © 1978, American Mathematical Society

[^0]: AMS (MOS) subject classifications (1970). Primary 05B40; Secondary 05A17.
 1 Work supported by US Energy Research and Development Administration under Contract W-7405-ENG. 36 and partially supported by NSF MCS 7701947.

