BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 84, Number 2, March 1978 © American Mathematical Society 1978

Littlewood-Paley and multiplier theory, by R. E. Edwards and G. I. Gaudry, Springer-Verlag, Berlin, Heidelberg, New York, 1977, ix + 212 pp., \$25.60.

Two results, obtained in the early thirties, due to Littlewood and Paley [11], can be considered to be the beginning of the Littlewood-Paley theory. Suppose $f \in L^p(T)$, $1 , where T is the one-dimensional torus, <math>c_k = (1/2\pi) \int_{-\pi}^{\pi} f(\varphi) e^{-ik\varphi} d\varphi$ and $\sum_{k=-\infty}^{\infty} c_k e^{ik\theta}$ is the Fourier series of f. For $N \ge 0$ let

(1)
$$\Delta_{\pm(N+1)}(\theta) = \Delta_{\pm(N+1)}(\theta; f) = \sum_{2^N \leq \pm k < 2^{N+1}} c_k e^{ik\theta}$$

and $\Delta_0(\theta) \equiv c_0$. The first result is that there exist constants A_p and B_p such that

(2)
$$A_p \|f\|_p \leq \|d(f)\|_p \leq B_p \|f\|_p,$$

where $d(f) = (\sum_{N=-\infty}^{\infty} |\Delta_N|^2)^{1/2}$. When p = 2, Plancherel's theorem immediately shows that both of these inequalities are equalities with $A_p = 1$ $= B_p$. When $p \neq 2$ these inequalities give us a characterization of those trigonometric series that are Fourier series of L^p functions (to wit: $||(\sum_{-\infty}^{\infty} |\Delta_N|^2)^{1/2}||_p < \infty)$. One of the important features of this characterization is that linear operators obtained by multipliers m_k (of the Fourier coefficients c_k) that vary boundedly on the dyadic blocks Δ_N preserve the class L^p . For example the projection of f onto the trigonometric series of power series type, $\sum_{k=0}^{\infty} c_k e^{ik\theta}$, is immediately seen to be bounded on $L^p(T)$ for 1 . More generally, the famous Marcinkiewicz theorem statingthat for <math>1

$$\left\|\sum_{k=-\infty}^{\infty} m_k a_k e^{ik\theta}\right\|_p$$

$$\leq A_p \left\{ \left(\sup_{N>0} \sum_{2^N \leq |k| \leq 2^{N+1}} |m_{k+1} - m_k| \right) + \sup_k |m_k| \right\} \|f\|_p$$

is a consequence of (2).

(3)

The second result involves the Littlewood-Paley g-function

$$g(f) = \left(\int_0^1 (1-r)|P'_r * f|^2 dr\right)^{1/2},$$

where P'_r is the derivative (with respect to r) of the Poisson kernel

$$P_r(\theta) = (1-r^2)/(1-2r\cos\theta+r^2).$$

Again we have inequalities which, like (2), express the equivalence of the L^p -norms of f and g(f) provided $\int_{-\pi}^{\pi} f = 0$: for $1 there exist constants <math>A_p$ and B_p such that

(4)
$$A_p \|f\|_p \leq \|g(f)\|_p \leq B_p \|f\|_p.$$

It turns out that in the original work of Littlewood and Paley the operators mapping f into d(f) were studied by using the properties of the g functions