EXISTENCE AND APPLICATIONS OF REMOTE POINTS

BY ERIC K. VAN DOUWEN
Communicated by P. T. Church, May 23, 1977

All spaces are completely regular, X^{*} is $\beta X-X$.
A point p of X^{*} will be called a remote point of X if $p \notin \mathrm{Cl}_{\beta X} D$ for every nowhere dense $D \subseteq X$. Fine and Gillman, $[F G]$ showed that \mathbf{Q}, the rationals, and \mathbf{R}, the reals, have remote points if CH holds; their proof shows that X has remote points if X is separable and not pseudo-compact. We prove the existence of remote points without assuming additional set theoretic axioms, under slightly stronger conditions on X.

Recall that a π-base (or pseudo-base) for a space X is a family B of nonempty open sets such that every nonempty open set of X includes a member of B. The π-weight of a space is the smallest cardinality for a π-base.

Theorem A. If X is a nonpseudocompact space with countable π-weight, then X has 2^{ε} remote points.

I originally proved this only for $X=\mathbf{Q}$, improving a technique from $\left[\mathrm{v} \mathrm{D}_{1}\right]$. I am indebted to Mary Ellen Rudin for showing me how to make my ideas work for $X=\mathbf{R}$. The above theorem is a further improvement.

For applications we need a "pointed" version of extremal disconnectedness.

Definition. If $p \in X$, then X is called extremally disconnected at p if for all disjoint open $U, V \subseteq X, p \notin \bar{U} \cap \bar{V}$.

One can show that βX is extremally disconnected at every remote point of X. Without much effort one deduces the following theorem. (X is nowhere locally compact if no point has a compact neighborhood.)

Theorem B. Let X be a nonpseudocompact space with countable π weight.
(a) βX is extremally disconnected at some point of X^{*}.
(b) If X is nowhere locally compact, X^{*} is extremally disconnected at some point.

Frolík, $[F]$, proved that X^{*} is not homogeneous if X is not pseudocompact. Theorem B can be used to show why X^{*} is not homogeneous, for suitable X.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 54D35, 54D40; Secondary 54B10, 54G05.

