ON THE THEORY OF Π_{1}^{1} SETS OF REALS

BY A. S. KECHRIS¹ AND D. A. MARTIN

Communicated by Solomon Feferman, June 2, 1977

1. An ordinal basis theorem. Assuming that $\forall x \in \omega^{\omega} (x^{\#} \text{ exists})$, let u_{α} be the α th uniform indiscernible (see [3] or [2]). A canonical coding system for ordinals $\langle u_{\omega} \rangle$ can be defined by letting $W_{0} = \{w \in \omega^{\omega} : w = \langle n, x^{\#} \rangle$, for some $n \in \omega, x \in \omega^{\omega}\}$ and for $w = \langle n, x^{\#} \rangle \in W_{0}$, $|w| = \tau_n^{L[x]}(u_1, \ldots, u_{k_n})$, where τ_n is the *n*th term in a recursive enumeration of all terms in the language of $ZF + V = L[\dot{x}], \dot{x}$ a constant, taking always ordinal values. Call a relation $P(\xi, x)$, where ξ varies over u_{ω} and x over ω^{ω} , Π_k^1 if $P^*(w, x) \Leftrightarrow w \in W_{0} \land P(|w|, x)$ is Π_k^1 . An ordinal $\xi < u_{\omega}$ is called Δ_k^1 if it has a Δ_k^1 notation i.e. $\exists w \in W_{0} (w \in \Delta_k^1 \land |w| = \xi)$.

THEOREM 1($ZF + DC + DETERMINACY(\Delta_2^1)$). Every nonempty Π_3^1 subset of $u_{i,j}$ contains a Δ_3^1 ordinal.

COROLLARY 2 (ZF + DC + DETERMINACY (Δ_2^1)). Π_3^1 is closed under quantification over ordinals $\langle u_{i,j}$ i.e. if $P(\xi, x)$ is Π_3^1 so are $\exists \xi P(\xi, x), \forall \xi P(\xi, x)$.

COROLLARY 3 (ZF + DC + AD). The class of Π_3^1 sets of reals is closed under $< \delta_3^1$ intersections and unions.

Martin [3] has proved the corresponding result for Δ_3^1 .

2. A Kleene theory for Π_3^1 . Kleene has characterized the Π_1^1 relations as those which are inductive (see [7]) on the structure $\langle \omega, \langle \rangle = Q_1$. Let $j_m : u_{\omega} \rightarrow u_{\omega}, m \ge 1$, be defined by letting

$$j_m(u_i) = \begin{cases} u_i, & \text{if } i < m, \\ u_{i+1}, & \text{if } i \ge m, \end{cases}$$

and then

$$j_m(\tau_n^{L[x]}(u_1, \cdots , u_{k_n})) = \tau_n^{L[x]}(j_m(u_1) \cdots j_m(u_{k_n})).$$

Let R be the relation on u_{i} , coding these embeddings, i.e.

$$R = \{ (m, \alpha, \beta) \colon m \in \omega \land \alpha, \beta < u_{\omega} \land j_{m}(\alpha) = \beta \}.$$

Put $Q_3 = \langle u_{\omega}, \langle, R \rangle$.

Copyright © 1978, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 04A15, 02K30, 28A05, 54H05; Secondary 02F35, 02K25, 02K35, 04A30.

¹Research partially supported by NSF Grant MCS 76-17254.