AVERAGE GAUSSIAN CURVATURE OF LEAVES OF FOLIATIONS

BY DANIEL ASIMOV¹

Communicated by P. T. Church, July 26, 1977

Let F be a smooth transversely-oriented foliation of a compact, connected, oriented, Riemannian manifold W^{n+1} of constant sectional curvature $\equiv c$. Let $K_F \colon W \longrightarrow \mathbb{R}$ via $K_F(x) =$ the Gaussian curvature (defined below) of the leaf l^n through x at x. For n = 2 this is classical Gaussian curvature. Let vol be the canonical volume on W, and define $\overline{K_F}$ by Volume $(W) \cdot \overline{K_F} = \int_W K_F$ vol.

THEOREM 1.

$$\overline{K}_{F} = \begin{cases} 2^{n} c^{n/2} / \binom{n}{n/2}, & n \text{ even,} \\ 0, & n \text{ odd.} \end{cases}$$

THEOREM 2. Let n + 1 = 3 and suppose F, W, c are as above except that ∂W is nonempty and is a union of leaves of F. Then

$$\int_{W} K_{F} \operatorname{vol} = 2c \operatorname{Volume}(W) + \int_{\partial W} H \operatorname{vol}$$

where $H: \partial W \longrightarrow \mathbf{R}$ is the mean curvature (computed with respect to the transverse orientation), and vol' is the canonical volume on ∂W .

THEOREM 3. Suppose n + 1 = 3. Let F and W be as in the original hypotheses with $\partial W = \emptyset$ but assume the sectional curvatures of W lie between c_1 and c_2 . Then we have $2c_1 \leq \overline{K_F} \leq 2c_2$.

DEFINITION OF GAUSSIAN CURVATURE. We define, for a Riemannian manifold $l = l^n$, the function $K: l \rightarrow \mathbf{R}$ in two cases (which overlap):

Case (i). *n* is even. In this case a local orthonormal frame on *l* gives rise to a matrix of curvature 2-forms, $\Omega = (\Omega_j^i)$ defined locally. The Pfaffians of the local Ω agree on overlaps and so define a global *n*-form Pf(Ω) on *l*. Letting *v* denote the canonical volume form on *l* we set

$$K\nu = \frac{2^{n/2} \cdot (n/2)!}{n!} \operatorname{Pf}(\Omega)$$

(see [3, vol. V, pp. 417-420]).

AMS (MOS) subject classifications (1970). Primary 57D30, 53C99.

Key words and phrases. Codimension-one foliation, Gaussian curvature, constant curvature.

¹ Research supported by the National Science Foundation.