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Let F be a smooth transversely-oriented foliation of a compact, connected, 
oriented, Riemannian manifold Wn+l of constant sectional curvature = c. Let 
K¥: W —* R via Kf(pc) = the Gaussian curvature (defined below) of the leaf ln 

through x at x. For n = 2 this is classical Gaussian curvature. Let vol be the 
canonical volume on W, and define K^ by Volume (W) • Kv = fw K^vol. 

THEOREM 1. 

2V"2/Gft> — * 
0, n odd. 

THEOREM 2. Let « + 1 = 3 and suppose F, W, c are as above except that 
dW is nonempty and is a union of leaves of F. Then 

ƒ KFvol = 2c Volume(W) + $bW H vol' 

where H: bW —> Ris the mean curvature {computed with respect to the trans
verse orientation), and vol' is the canonical volume on dW. 

THEOREM 3. Suppose n + 1 = 3. Let F and W be as in the original hy
potheses with dW = 0 but assume the sectional curvatures of W lie between cx 

and c2. Then we have 2c\ < Kf < 2c2. 

DEFINITION OF GAUSSIAN CURVATURE. We define, for a Riemannian 
manifold I = ln, the function K: I —> R in two cases (which overlap): 

Case (i). n is even. In this case a local orthonormal frame on / gives rise 
to a matrix of curvature 2-forms, £2 = (fij.) defined locally. The Pfaffians of the 
local £1 agree on overlaps and so define a global «-form Pf(£2) on /. Letting v de
note the canonical volume form on / we set 

2n/2 • (n/2)\ 

(see [3, vol. V, pp. 417-420]). 
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