BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 84, Number 1, January 1978
© American Mathematical Society 1978
Le mouvement brownien relativiste, by Jean-Pierre Caubet, Lecture Notes in Mathematics, no. 559, Springer-Verlag, Berlin, Heidelberg, New York, 1976, ix + 212 pp., \$10.20.

It is just 25 years since Imre Fényes [2] discovered the Markov process associated with a solution of the Schrödinger equation. This process is easy to describe. Suppose that we have a solution ψ of the Schrödinger equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi(x, t)=i\left(\frac{1}{2} \Delta-V\right) \psi(x, t) . \tag{1}
\end{equation*}
$$

Here x ranges over \mathbf{R}^{n} and t over \mathbf{R} and for each t the function $\psi_{t}(x)=$ $\psi(x, t)$ is in $L^{2}\left(\mathbf{R}^{n}\right)$. We have set $\hbar=m=1$, and V is the operator of multiplication by a possibly time-dependent real function (also denoted by V). The quantity $\left\|\psi_{t}\right\|_{2}^{2}$ is independent of t and may be normalized to 1 , so that $\rho_{t}=\left|\psi_{t}\right|^{2}$ is the density of a probability measure on \mathbf{R}^{n}. We may write $\psi=\exp (R+i S)$ and set $u=\operatorname{grad} R, v=\operatorname{grad} S, b=u+v$. Then the diffusion process with drift b-that is, the Markov process satisfying

$$
\begin{equation*}
d x(t)=b(x(t), t) d t+d w(t) \tag{2}
\end{equation*}
$$

where w is the Wiener process-and with initial distribution ρ_{0} has the probability distribution ρ_{t} at all times t. Conversely, given such a diffusion process (2) we may let b_{*} be the backward drift and set $u=\left(b-b_{*}\right) / 2$, $v=\left(b+b_{*}\right) / 2$. Then u is the gradient of $\frac{1}{2} \log \rho$. If we assume that v is also a gradient then there is a unique V and a unique solution ψ of (1) such that with $\psi=\exp (R+i S)$ we have $u=\operatorname{grad} R$ and $v=\operatorname{grad} S$.
To get a better idea of these processes let us consider a few examples.
Consider the Wiener process itself where as customary we require the particle to be at the origin at time 0 . Then the drift $b(x, t)$ is 0 for $t>0$, but for $t<0$ the particle is destined to go from x to the origin in $|t|$ units of time and the drift is $b(x, t)=x / t$. Similarly $b_{*}(x, t)=0$ for $t<0$ but $b_{*}(x, t)=$ x / t for $t>0$. Now it is straightforward to compute u, v, R, S, ψ, and V. We find

$$
\psi=(\pi t)^{-n / 4} \exp \left(-\frac{1}{2} \frac{x^{2}}{|t|}+i \frac{1}{2} \frac{x^{2}}{t}\right)
$$

which satisfies (1) with $V=x^{2} / 4 t^{2}$. The graph of this time-dependent potential is a paraboloid which is very shallow for large negative t but which snaps shut as $t \rightarrow 0$ and then opens out again, forcing the particle to go through the origin at $t=0$. Thus this process is not free; it is subject to a force $F=-\operatorname{grad} V=-x / 2 t^{2}$.
A shortcut for computing V is available from the fact [3], [4] that Newton's law $F=m a$ holds, where a is the mean acceleration defined as follows. For a stochastic process x we define

