Le mouvement brownien relativiste, by Jean-Pierre Caubet, Lecture Notes in Mathematics, no. 559, Springer-Verlag, Berlin, Heidelberg, New York, 1976, ix + 212 pp., \$10.20.

It is just 25 years since Imre Fényes [2] discovered the Markov process associated with a solution of the Schrödinger equation. This process is easy to describe. Suppose that we have a solution ψ of the Schrödinger equation

(1)
$$\frac{\partial}{\partial t}\psi(x,t)=i\bigg(\frac{1}{2}\Delta-V\bigg)\psi(x,t).$$

Here x ranges over \mathbb{R}^n and t over \mathbb{R} and for each t the function $\psi_t(x) = \psi(x, t)$ is in $L^2(\mathbb{R}^n)$. We have set $\hbar = m = 1$, and V is the operator of multiplication by a possibly time-dependent real function (also denoted by V). The quantity $\|\psi_t\|_2^2$ is independent of t and may be normalized to 1, so that $\rho_t = |\psi_t|^2$ is the density of a probability measure on \mathbb{R}^n . We may write $\psi = \exp(R + iS)$ and set $u = \operatorname{grad} R$, $v = \operatorname{grad} S$, b = u + v. Then the diffusion process with drift b-that is, the Markov process satisfying

(2)
$$dx(t) = b(x(t), t) dt + dw(t)$$

where w is the Wiener process-and with initial distribution ρ_0 has the probability distribution ρ_t at all times t. Conversely, given such a diffusion process (2) we may let b_* be the backward drift and set $u = (b - b_*)/2$, $v = (b + b_*)/2$. Then u is the gradient of $\frac{1}{2} \log \rho$. If we assume that v is also a gradient then there is a unique V and a unique solution ψ of (1) such that with $\psi = \exp(R + iS)$ we have $u = \operatorname{grad} R$ and $v = \operatorname{grad} S$.

To get a better idea of these processes let us consider a few examples.

Consider the Wiener process itself where as customary we require the particle to be at the origin at time 0. Then the drift b(x, t) is 0 for t > 0, but for t < 0 the particle is destined to go from x to the origin in |t| units of time and the drift is b(x, t) = x/t. Similarly $b_*(x, t) = 0$ for t < 0 but $b_*(x, t) = x/t$ for t > 0. Now it is straightforward to compute u, v, R, S, ψ , and V. We find

$$\psi = (\pi t)^{-n/4} \exp\left(-\frac{1}{2} \frac{x^2}{|t|} + i \frac{1}{2} \frac{x^2}{t}\right),$$

which satisfies (1) with $V = x^2/4t^2$. The graph of this time-dependent potential is a paraboloid which is very shallow for large negative t but which snaps shut as $t \to 0$ and then opens out again, forcing the particle to go through the origin at t = 0. Thus this process is not free; it is subject to a force $F = -\text{grad } V = -x/2t^2$.

A shortcut for computing V is available from the fact [3], [4] that Newton's law F = ma holds, where a is the mean acceleration defined as follows. For a stochastic process x we define