TWO PROOFS OF THE STABLE ADAMS CONJECTURE

BY ERIC M. FRIEDLANDER ${ }^{1}$ AND R. M. SEYMOUR
Communicated by R. James Milgram, March 14, 1977

Let p and q be distinct primes. The complex Adams conjecture establishes a homotopy commutative diagram

where J is the complex J-homomorphism and ${ }_{-(p)}$ denotes localization at p. Both J and Ψ^{q} are infinite loop maps, and it is natural to ask whether this result is infinitely deloopable; that is, whether $J \Psi^{q}=J$ as infinite loop maps. This is the Stable Adams Conjecture.

We announce here two independent proofs of this conjecture. Details will appear in [2] and [6].

Method 1. Our proof is based upon a "geometric" criterion for pairs of maps into the spectrum $(\operatorname{BsG})^{\wedge} \cong(\operatorname{BsG})_{(p)}$ to be homotopic, where ($)^{\wedge}$ denotes the Bousfield-Kan \mathbf{Z} / p-completion functor. We exploit the "galois symmetry" of $(\mathbf{k U})^{\wedge}$ [8] to show that $J^{\wedge}, J^{\wedge} \circ\left(\Psi^{q}\right)^{\wedge}$ satisfy this criterion.

We impose a Quillen closed model category structure on Segal's Γ-spaces [3], whose weak equivalences are level-wise weak equivalences of spaces. For any "suitably oriented, pointed C. W.-like space" X (e.g., X any pointed C. W. complex with no orientation specified), we obtain a Γ-space $B s G_{X}$ arising from distinguished homotopy equivalences of iterated smash products of X with itself. There is a natural functor

$$
\Phi: \text { Но Г-spaces } \longrightarrow \text { HoSpectra }
$$

sending $B s G_{S^{2}}$ to $\Phi\left(B s G_{S^{2}}\right)=B s G$.
Our basic representability theorem is a description of the functor

$$
\operatorname{Hom}_{\text {Hor-spaces }}\left(, B s G_{X}\right)
$$

as being isomorphic to the functor $S X($) of "oriented X-structures" over a variable Γ-space as base. For sufficiently nice X (e.g., $X=S^{2}$), $\operatorname{Hom}_{\text {Hor-spaces }}\left(,\left(B s G_{X}\right)^{\wedge}\right)$ is isomorphic to $\mathbf{Z} / p s X()$ (the theory of "oriented, \mathbf{Z} / p-completed X-structures"). The critical property of these X-structures is that they admit a functorial principal-

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 55B15, 55 F50.
 1 Partially supported by the N.S.F.

