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Let p and q be distinct primes. The complex Adams conjecture establishes 
a homotopy commutative diagram 

M* — \ B U W 

BSG(P) 

where / is the complex /-homomorphism and , y denotes localization at p. Both 
J and ** are infinite loop maps, and it is natural to ask whether this result is in
finitely deloopable; that is, whether J<ffq = / as infinite loop maps. This is the 
Stable Adams Conjecture. 

We announce here two independent proofs of this conjecture. Details will 
appear in [2] and [6]. 

METHOD 1. Our proof is based upon a "geometric" criterion for pairs of 
maps into the spectrum (BsG)A s (BsG)(p) to be homotopic, where ( )A denotes 
the Bousfield-Kan Z/p-completion functor. We exploit the "galois symmetry" of 
(kU)A [8] to show that JA, JA ° (*^)A satisfy this criterion. 

We impose a Quillen closed model category structure on Segal's T-spaces 
[3], whose weak equivalences are level-wise weak equivalences of spaces. For any 
"suitably oriented, pointed C. W.-like space" X (e.g., X any pointed C. W. complex 
with no orientation specified), we obtain a T-space BsGx arising from distinguish
ed homotopy equivalences of iterated smash products of X with itself. There is a 
natural functor 

$: Ho T-spaces —• HoSpectra 
sending BsGs2 to QÇ$sGs2) = BsG. 

Our basic representability theorem is a description of the functor 
H o m H o r - s p a c e s ( > ^Gx) 

as being isomorphic to the functor sX( ) of "oriented X-structures" over a variable 
T-space as base. For sufficiently nice X (e.g., X = S2), HomHor.spaces( , (J$sGx)*) 
is isomorphic to Z/psX( ) (the theory of "oriented, Z/p-completed X-structures"). 
The critical property of these X-structures is that they admit a functorial principal-
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