CLASSIFICATION OF INVOLUTIVE BANACH-LIE ALGEBRAS ${ }^{1}$

BY K. P. HANSCOMBE
Communicated by Paul R. Halmos, April 21, 1977

1. The structure and classification theory of semisimple complex Lie algebras is extended to a class of infinite dimensional Banach-Lie algebras. The work abandons the use of a bilinear form, generalizing instead the notion of a compact form.

Following Bonsall and Duncan [1], an operator T on a Banach space is called Hermitian if $|\exp (i t T)|=1, t \in \mathbf{R}$. A complex Banach-Lie algebra E with involution ${ }^{*}$ is called symmetric if $\forall x \in E, x=x^{*}$, the operator ad $x \in B(E)$ given by the left regular representation is Hermitian. If E is a symmetric Lie algebra then $\left\{x \in E: x^{*}=-x\right\}$ is a natural analogue of a compact form. A Cartan subalgebra M of E is a maximal selfadjoint abelian subalgebra. Roots are defined as usual: $\alpha \in M^{\prime}$ is a root of E if the root space $E(\alpha)=\{x \in E:[h, x]$ $=\alpha(h) x \forall h \in M\} \neq\{0\}$. The maximality of M implies $E(0)=M$, and for each nonzero root $\alpha, E(\alpha)$ is one dimensional.

A pair (E, M) is called chromatic if E is a semisimple symmetric Lie algebra with $[E, E]$ dense in $E, M \subset E$ is a Cartan subalgebra, and the orbits $G(x)$ in E under the action of the group $G=\left\{\exp (i \operatorname{ad} h): h \in M, h=h^{*}\right\}$ are relatively compact. Henceforth, (E, M) will always denote an infinite dimensional chromatic pair, and Δ will denote the system of nonzero roots of (E, M).

Harmonic analysis shows that the linear span of all root spaces is dense in E. All results from the finite dimensional root theory carry through for chromatic pairs. A compactness argument on nets of finite dimensional subalgebras shows that two chromatic pairs with isomorphic root systems are algebraically isomorphic. Further, (E, M) has a Chevally form, i.e. there exists $\left\{x_{\alpha}, \tau_{\alpha}: \alpha \in \Delta\right\}$ such that $x_{\alpha} \in E(\alpha), x_{\alpha}^{*}=x_{-\alpha}, \alpha\left(\tau_{\alpha}\right)=2$ where $\tau_{\alpha}=\left[x_{\alpha}, x_{-\alpha}\right]$ and $\left[x_{\alpha}, x_{\beta}\right]$ $=n(\alpha, \beta) x_{\alpha+\beta}$ where $n(\alpha, \beta) \in \mathbf{Z}$. The Cartan integers $\alpha\langle\beta\rangle=\alpha\left(\tau_{\beta}\right)$ are independent of the choice of x_{α}.
2. Henceforth, (E, M) will be simple (that is, Δ will be indecomposable). Simple chromatic pairs can be classified; they fall into the four big classes A, B, C, D. The proof for the type A or D cases uses ideas due to Kibler (see Kaplansky [4]) but the lack of a bilinear form necessitates modifications. $U \subset \Delta$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 17B65, 17B20; Secondary 47D99.
 ${ }^{1}$ Partial results of author's thesis [3] under J. P. O. Silberstein.

