BIFURCATION OF PERIODIC ORBITS ON MANIFOLDS, AND HAMILTONIAN SYSTEMS¹

BY M. BOTTKOL

Communicated by R. T. Seeley, April 22, 1977

We consider a vector field X_0 having a whole submanifold $\Sigma \subset M$ of periodic points, and ask if any periodic orbits persist under small perturbation, i.e. do all vector fields Y sufficiently near X_0 have periodic orbits lying near Σ . Σ is assumed to be compact. Although in the general case there are simple counterexamples (e.g. on $\Sigma = n$ torus) some natural hypotheses on Σ and the flow of X_0 guarantee periodic orbits for Y, which are thought of as bifurcating off the manifold Σ . Our method here is closely analogous to that of Moser [2], [3], and also his method of averaging on manifolds [1].

In the case of Hamiltonian flows, these methods take on added significance, and the classical action integral makes an appearance. Here the results may be viewed as an extension to S^1 -actions of results of Weinstein carried out for Z_n -actions [4], [5].

1. The general case. Let X_0 be a vector field on a manifold M and ϕ^t its induced flow. A nondegenerate periodic manifold of X_0 of period τ is a ϕ^t -invariant submanifold of M such that $\phi^{\tau}(z) = z$ for all $z \in \Sigma$, and such that 1 is an eigenvalue of $d\phi_z^{\tau}$ of algebraic multiplicity $k = \dim \Sigma$.

We denote the space of vector fields over M by X(M), having the usual C^k norm $\|\cdot\|_k$. We parametrize a neighborhood of the identity in Diff(M) by a neighborhood of $0 \in X(M)$ by taking a metric and setting $u(z) = \exp_z U(z)$, for $U \in X(M)$ small enough. We define an operator P(u): $X(M) \to X(M)$ which transports vectors at z to vectors at u(z) by setting, for $W \in T_z M$,

$$P(u)W = \frac{d}{dh}\bigg|_{h=0} \exp_z(U(z) + hW).$$

LEMMA A. Let X_0 be a C^{l+1} vector field on M^n generating the flow ϕ^t , having a compact nondegenerate periodic manifold Σ of period 1. Suppose Y is a vector field so that $||Y - X_0||_{l+1} < \epsilon$ in some neighborhood of Σ . Then for ϵ sufficiently small, there exists a C^l vector field $V \in X(\Sigma)$, a C^l embedding u: $\Sigma \rightarrow M$ near the inclusion, and ϕ^t -invariant function $\lambda: \Sigma \rightarrow R$ so that

AMS (MOS) subject classifications (1970). Primary 34C25, 58F05, 34C30; Secondary 70H99.

¹This work was partially supported by NSF Grant No. MCS74 03003 A 02.