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We consider a vector field X0 having a whole submanifold 2 C M of peri
odic points, and ask if any periodic orbits persist under small perturbation, i.e. 
do all vector fields Y sufficiently near X0 have periodic orbits lying near 2. 2 
is assumed to be compact. Although in the general case there are simple counter
examples (e.g. on 2 = n torus) some natural hypotheses on 2 and the flow of 
X0 guarantee periodic orbits for F, which are thought of as bifurcating off the 
manifold 2. Our method here is closely analogous to that of Moser [2], [3], 
and also his method of averaging on manifolds [1]. 

In the case of Hamiltonian flows, these methods take on added significance, 
and the classical action integral makes an appearance. Here the results may be 
viewed as an extension to Sl -actions of results of Weinstein carried out for Zn~ 
actions [4], [5]. 

1. The general case. Let X0 be a vector field on a manifold M and 0' its 
induced flow. A nondegenerate periodic manifold of X0 of period r is a 0?-in-
variant submanifold of M such that 0r(z) = z for all z G 2, and such that 1 is 
an eigenvalue of d$\ of algebraic multiplicity k = dim 2. 

We denote the space of vector fields over M by X(M)9 having the usual 
Ck norm ll'll^. We parametrize a neighborhood of the identity in Diff(M) by a 
neighborhood of 0 G X(M) by taking a metric and setting u(z) = expzll(z), for 
U G X{M) small enough. We define an operator P(u): X(M) —» X(M) which 
transports vectors at z to vectors at u(z) by setting, for W G TZM, 

P(u)W = fh „= 0 exp2(£/(z) + hW). 

LEMMA A. Let X0 be a C /+ * vector field on M1 generating the flow 0f, 
having a compact nondegenerate periodic manifold 2 of period 1. Suppose Y is 
a vector field so that II Y - XQII/+1 <e in some neighborhood of 2. Then for 
e sufficiently small, there exists a Cl vector field VG XÇE), a Cl embedding u: 
2 —• M near the inclusion, and tf-invariant function X: 2 —> R so that 
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